Skip to main content
Log in

On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function \(p(\rho )=a^2\rho ^\gamma \) with \(\gamma >1\). The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t(rs) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x(rs) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if \(\gamma >3\). We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G., Pan, R., Zhu, S.: Singularity formation for compressible euler equations. Preprint available from arXiv:1408.6775

  2. Copson, E.T.: On the riemann-green function. Arch. Rational Mech. Anal. 1, 324–348 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Springer-Verlag, New York (1976). Reprinting of the 1948 original; Applied Mathematical Sciences, vol. 21

  4. Courant, R., Hilbert, D.: Methods of mathematical physics. vol. ii. Wiley Classics Library, Wiley, New York (1989). Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication

  5. Darboux, G.: Leçons sur la théorie générale des surfaces. i, ii. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux (French) (1993). Généralités. Coordonnées curvilignes. Surfaces minima. [Generalities. Curvilinear coordinates. Minimum surfaces]; Les congruences et les équations linéaires aux dérivées partielles. Les lignes tracées sur les surfaces. [Congruences and linear partial differential equations. Lines traced on surfaces]; Reprint of the second (1914) edition (I) and the second (1915) edition (II); Cours de Géométrie de la Faculté des Sciences. [Course on Geometry of the Faculty of Science]

  6. Xia Xi, D., Gui Qiang, C., Pei Zhu, P.Z.: Convergence of the fractional step lax-friedrichs scheme and godunov scheme for the isentropic system of gas dynamics. Comm. Math. Phys. 121(1), 63–84 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. DiPerna, R.J.: Existence in the large for quasilinear hyperbolic conservation laws. Arch. Rational Mech. Anal. 52, 244–257 (1973)

  8. DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91(1), 1–30 (1983)

  9. Glimm, James: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697–715 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gradshteyn, I.S.: Table of integrals, series, and products, 6 edn. Academic Press, Inc., San Diego, CA. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger (2000)

  11. Lin, L.W.: On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121(2), 406–425 (1987). doi:10.1016/0022-247X(87)90253-8

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, T.P.: Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal. 64(2), 137–168 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Monroe, H.: The rectilinear motion of a gas. Am. J. Math. 65, 391–407 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nishida, Takaaki: Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad. 44, 642–646 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nishida, T., Smoller, J.A.: Solutions in the large for some nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 26, 183–200 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Tech- nology, Washington, DC; Cambridge University Press, Cambridge (2010). With 1 CD-ROM (Windows, Macintosh and UNIX)

  17. Polyanin, A.D., Manzhirov, A.V.: Handbook of integral equations, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL (2008)

    Book  MATH  Google Scholar 

  18. Riemann, B.: Collected papers. Kendrick Press, Heber City, UT (2004). Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde

  19. Riemann, B.: The propagation of planar air waves of finite amplitude [abh. ges. wiss. göttingen 8, : 43–65], Classic papers in shock compression science, High-press. Shock Compression Condens. Matter, Springer, New York 1998, 109–128 (1860)

  20. Smoller, J.: Shock waves and reaction-diffusion equations, 2 edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258. Springer-Verlag, New York (1994)

  21. Blake, J.: Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics. J. Differ. Equ. 41(1), 96–161 (1981). doi:10.1016/0022-0396(81)90055-3

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Kristian Jenssen.

Additional information

Communicated by T. Nishida

Partially supported by NSF Grant DMS-1311353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenssen, H.K. On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow. J. Math. Fluid Mech. 19, 685–708 (2017). https://doi.org/10.1007/s00021-016-0309-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0309-y

Navigation