Journal of Mathematical Fluid Mechanics

, Volume 19, Issue 4, pp 819–829 | Cite as

Existence and Uniqueness of Very Weak Solutions to the Steady-State Navier–Stokes Problem in Lipschitz Domains

  • Vincenzo CosciaEmail author


We prove that in a bounded Lipschitz domain of \({\mathbb {R}}^3\) the steady-state Navier–Stokes equations with boundary data in \(L^2(\partial \Omega )\) have a very weak solution \(\varvec{u}\in L^3(\Omega )\), unique for large viscosity.


Stationary Navier Stokes equations Bounded Lipschitz domains Boundary-value problem 

Mathematics Subject Classification

Primary 76D05 35Q30 Secondary 31B10 76D03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amrouche, C., Rodríguez-Bellido, M.A.: Stationary Stokes, Oseen and Navier–Stokes equations with singular data. Arch. Rational Mech. Anal. 199, 597–651 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Farwig, R., Galdi, G.P., Sohr, H.: A New class of weak solutions of the Navier-Stokes equa- tions with nonhomogeneous data. J. Math. Fluid. Mech. 8, 423–444 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Farwig, R., Sohr, H.: Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in \({\mathbb{R}}^n\). Czechoslovak Math. J. 59, 61–79 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, 2nd edn. Springer, New York (2011)Google Scholar
  5. 5.
    Galdi, G.P., Simader, C.G., Sohr, H.: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in \(W^{-1/q, q}\). Math. Ann. 331, 41–74 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kapitanskii, L.V., Pileckas, K.: On spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries, Trudy Mat. Inst. Steklov, 159 (1983), 5–36. English Transl.: Proc. Math. Inst. Steklov, 159 (1984)Google Scholar
  7. 7.
    Kim, H.: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations, Arch. Rational Mech. Anal. 193 (2009), 117–152. Erratum. Arch. Rational Mech. Anal. 196, 1079–1080 (2010)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Korobkov, M.V., Pileckas, K., Russo, R.: On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary. Arch. Rational Mech. Anal. 207, 185–213 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Korobkov, M.V., Pileckas, K., Russo, R.: Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 181, 769–807 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Korobkov, M.V., Pileckas, K., Russo, R.: The existence theorem for steady Navier–Stokes equations in the axially symmetric case. Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 14, 233–262 (2015)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Ladyzhenskaia, O.A.: The Mathematical theory of viscous incompressible fluid. Gordon and Breach (1969)Google Scholar
  12. 12.
    Leray, J.: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)zbMATHGoogle Scholar
  13. 13.
    Marušić-Paloka, E.: Solvability of the Navier–Stokes system with \(L^2\) boundary data. Appl. Math. Optimization 41, 365–375 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Mitrea, M., Taylor, M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Nečas, J.: Direct methods in the theory of elliptic equations. Springer, Berlin (2012)zbMATHGoogle Scholar
  16. 16.
    Russo, R.: On the existence of solutions to the stationary Navier-Stokes equations. Ricerche Mat. 52, 285–348 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in mathematica fluid mechanics, pp. 473–511. Springer-Verlag, Berlin (2010)CrossRefGoogle Scholar
  18. 18.
    Russo, A., Starita, G.: On the existence of steady-state solutions to the Navier–Stokes equations for large fluxes. Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 7, 171–180 (2008)zbMATHGoogle Scholar
  19. 19.
    Russo, A., Tartaglione, A.: On the Stokes problem with data in \(L^1\). ZAMP 64, 1327–1336 (2013)ADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces. Ann. Univ. Ferrara 54, 123–144 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Serre, D.: Équations de Navier-Stokes stationnaires avec données peu régulières. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 543–559 (1983)zbMATHGoogle Scholar
  22. 22.
    Shen, Z.: A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Am. Math. Soc. 123, 801–811 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Verlag, Switzerland (2001)zbMATHGoogle Scholar
  24. 24.
    Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton (1993)zbMATHGoogle Scholar
  25. 25.
    Tartaglione, A.: On the Stokes and Oseen problems with singular data. J. Math. Fluid Mech. 16, 407–417 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Temam, R.: Navier-Stokes equations. North-Holland (1977)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di FerraraFerraraItaly

Personalised recommendations