Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 19, Issue 4, pp 773–805 | Cite as

Feedback Stabilization of the Incompressible Navier–Stokes Equations Coupled with a Damped Elastic System in Two Dimensions

  • Debayan Maity
  • Jean-Pierre RaymondEmail author
Article
  • 109 Downloads

Abstract

In this article we study a system coupling the incompressible Navier–Stokes equations with an elastic structure governed by a damped wave equation in a two dimensional channel with periodic boundary conditions. The elastic structure is located at the upper boundary of the domain occupied by the fluid. The domain occupied by the fluid depends on the displacement of the elastic structure, and therefore it depends on time. We prove that this coupled system may be stabilized around the steady state zero, at any exponential decay rate, by a Dirichlet control acting in the lower boundary of the fluid domain.

Keywords

Fluid-structure interaction feedback control stabilization Navier–Stokes equations damped elastic system 

Mathematics Subject Classification

93C20 93B52 93D15 35Q30 76D05 74F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badra, M., Takahashi, T.: Feedback boundary stabilization of 2D fluid-structure interaction systems. https://hal.archives-ouvertes.fr/hal-01370000 (2016)
  2. 2.
    Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S.K.: Representation and control of infinite dimensional systems. Systems and Control: Foundations & Applications, 2nd edn. Birkhäuser Boston, Inc., Boston (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Burns, J.A., King, B.B.: A note on the mathematical modelling of damped second order systems. J. Math. Syst. Estim. Control 8, 1–12 (1998)MathSciNetGoogle Scholar
  4. 4.
    Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Q. Appl. Math. 39, 433–454 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, S.P., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136, 15–55 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Casas, E., Matéos, M., Raymond, J.-P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15, 782–809 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fabre, C., Lebeau, G.: Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21(3–4), 573–596 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, S.: Mathematical and numerical analysis of some FSI problems. Fluid-structure interaction and biomedical applications, pp. 1–77, Adv. Math. Fluid Mech. Birkhäuser/Springer, Basel (2014)Google Scholar
  9. 9.
    Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1991). (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kato, T.: Perturbation theory for linear operators, Corrected Printing of the Second Edition. Springer, Heidelberg (1980)Google Scholar
  11. 11.
    Lequeurre, J.: Existence of strong solutions for a system coupling the Navier–Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15, 249–271 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Matignon, D., Ndiaye, M., Raymond, J.-P.: Feedback stabilization around a non zero stationary solution of a 3D fluid-structure model with a boundary control (in preparation) Google Scholar
  13. 13.
    Ndiaye, M., Matignon, D., Raymond, J.-P.: Feedback stabilization of a 3D fluid-structure model with a boundary control, In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, University of Gröningen, Gröningen (2014)Google Scholar
  14. 14.
    Nguyen, P.A., Raymond, J.-P.: Boundary stabilization of the Navier–Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53, 3006–3039 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  16. 16.
    Raymond, J.-P.: Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48, 5398–5443 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Raymond, J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 921–951 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Raymond, J.-P.: Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1537–1564 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Raymond, J.-P., Vanninathan, M.: A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. (9) 102(3), 546–596 (2014)Google Scholar
  20. 20.
    Rudin, W.: Real and Complex Analysis, McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  21. 21.
    Triggiani, R.: Regularity of some structurally damped problems with point control and with boundary control. J. Math. Anal. Appl. 161, 299–331 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Triggiani, R.: Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. Nonlinear Anal. 71, 4967–4976 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Turek, S., Hron, J., Mádlikík, M., Razzaq, M., Wobker, H., Acker, J.-F.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with applications to hemodynamics. In: Bungartz, H.-J., et al. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 193–220. Springer, Berlin (2010)Google Scholar
  24. 24.
    van Zuijlen, A.H., Bijl, H.: Multi-Level Accelerated sub-iterations for fluid-structure interaction. In: Bungartz, H.-J., et al. (eds.) Fluid-Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 1–25. Springer, Berlin (2010)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.TIFR, Centre for Applicable MathematicsBangaloreIndia
  2. 2.Institut de Mathematiques de ToulouseUniversite Paul Sabatier and CNRSToulouse CedexFrance

Personalised recommendations