Skip to main content
Log in

Exact and Explicit Internal Equatorial Water Waves with Underlying Currents

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we present an exact and explicit solution to the geophysical governing equations in the Equatorial region, which represents internal oceanic waves in the presence of a constant underlying current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, A.: Lagranian Fluid Dynamics. Cambridge University Press, Cambridge (2006)

  2. Constantin A.: Edge wave along a sloping beach. J. Phys. A Math. Gen. 45, 9723–9731 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Constantin A.: On the deep water wave motion. J. Phys. A Math. Gen. 7, 1405–1417 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. CBMS-NFS Regional Conference Series in Applied Mathematics, vol. 81 (2011)

  6. Constantin, A.: On the modelling of Equatorial waves. Geophys. Res. Lett. 39, L05602 (2012). doi:10.1029/2012GL051169

  7. Constantin, A.: An exact solution for Equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012). doi:10.1029/2012JC007879

  8. Constantin A.: Some three-dimensional nonlinear Equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  ADS  Google Scholar 

  9. Constantin A.: Some nonlinear, Equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  ADS  Google Scholar 

  10. Constantin A., Germain P.: Instability of some Equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  ADS  Google Scholar 

  11. Constantin A., Johnson R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. (2016). doi:10.1175/JPO-D-15-0205.1

  13. Constantin A., Strauss W.: Pressure beneath a Stokes waves. Commun. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cushman-Rosin B., Beckers J.-M.: Introduction to Geophysical Fluid Dynamic. Academic Press, New York (2011)

    Google Scholar 

  15. Fedorov, A.V., Brown, J.N.: Equatorial Waves. Encyclopedia of Ocean Sciences, 2nd edn., pp. 3679–3695 (2009)

  16. Gallagher, I., Saint-Raymond, L.: On the influence of the Earths rotation on geophysical flows. In: Edited by Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 4, pp. 201–329 (2007)

  17. Genoud F., Henry D.: Instability of Equatorial water waves with an underlying current. J. Math. Fluid Mech. 4, 661–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 32, 412–445 (1809)

    Article  Google Scholar 

  19. Henry D.: On Gerstner’s water waves. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Henry, D.: On the deep-water Stokes wave flow. International Mathematics Research Notices, IMRN (2008)

  21. Henry D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18–21 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Henry D.: Internal Equatorial water waves in the f-plane. J. Nonlinear Math. Phys. 22, 499–506 (2015)

    Article  MathSciNet  Google Scholar 

  23. Henry D.: Exact Equatorial water waves in the f-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Henry D., Hsu H.-C.: Instabillity of internal Equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)

    Article  ADS  MATH  Google Scholar 

  25. Henry D., Hsu H.-C.: Instabillity of internal Equatorial water waves in the f-plane. Discrete Contin. Dyn. Syst. Ser. A 35, 909–916 (2015)

    Article  MATH  Google Scholar 

  26. Henry, D., Sastre-Gómez, S.: Mean flow velocities and mass transport for Equatorially-trapped water waves with an underlying current. J. Math. Fluid Mech. (2016, to appear)

  27. Hsu H.-C.: An exact solution for nonlinear internal Equatorial waves in the f-plane approximation. J. Math. Fluid Mech. 16, 463–471 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hsu H.-C.: Some nonlinear internal Equatorial flows. Nonlinear Anal. Real World Appl. 18, 69–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ionescu-Kruse D.: An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kessler W.S., McPhaden M.J.: Oceanic Equatorial waves and the 1991–93 El Niño. J. Clim 8, 1757–1774 (1995)

    Article  ADS  Google Scholar 

  31. Matioc, A.-V.: An exact solution for geophysical edge waves over a sloping beach. J. Phys. A Math. Theor. 45 (2012)

  32. Matioc A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pedlosky J.: Geophysical Fluid Dynamics. Springer, Berlin (1992)

    MATH  Google Scholar 

  34. Sanjurjo, A.R.: Global diffeomorphism of the Lagrangian flow-map for Equatorially trapped internal water waves (preprint)

  35. Sastre-Gómez S.: Global diffeomorphism of the Lagrangian flow-map defining Equatorially trapped water waves. Nonlinear Anal. Ser. A Theory Methods Appl. 125, 725–731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stuhlmeier R.: On edge waves in stratified water along a sloping beach. J. Nonlinear Math. Phys. 18, 127–137 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Kluczek.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kluczek, M. Exact and Explicit Internal Equatorial Water Waves with Underlying Currents. J. Math. Fluid Mech. 19, 305–314 (2017). https://doi.org/10.1007/s00021-016-0281-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0281-6

Mathematics Subject Classification

Keywords

Navigation