Journal of Mathematical Fluid Mechanics

, Volume 19, Issue 2, pp 283–304

On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

Open Access
Article

Abstract

We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler’s equation of motion has to be suitably adjusted, in order to account for the influence of the earth’s rotation.

Keywords

Surface waves Coriolis effects irrotational flows particle paths 

Mathematics Subject Classification

35Q35 76B15 

References

  1. 1.
    Chen, Y.-Y., Hsu, H.-C., Chen, G.-Y.: Lagrangian experiment and solution for irrotational finite-amplitude progressive gravity waves at uniform depth. Fluid Dyn. Res. 42, Art. No. 045511 (2010)Google Scholar
  2. 2.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, Art. No. C05029 (2012)Google Scholar
  3. 3.
    Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, Art. No. L05602 (2012)Google Scholar
  4. 4.
    Constantin A.: The trajectories of particles in Stokes waves. Invent. math. 166, 523–535 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Constantin A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Constantin, A., Escher, J.: Analyticity of periodic travelling free surface water waves with vorticity. Anal. Math. 173, 589–568 (2011)Google Scholar
  7. 7.
    Constantin A., Johnson R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid. Dyn. 109, 311–358 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Constantin, A., Johnson, R.S.: An exact, steady, periodic, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. doi:10.1175/JPO-D-15-0205.1 (in press)
  9. 9.
    Constantin A., Kalimeris K., Scherzer O.: A penalization method for calculating the flow beneath traveling water waves of large amplitude. SIAM J. Appl. Math. 75, 1513–1535 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Constantin A., Strauss W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63, 533–557 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Clamond D.: Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves. Phil. Trans. R. Soc. A 370, 1572–1586 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fedorov, A.V., Brown, J.N.: Equatorial waves. In: Steele, J. (ed.) Encyclopedia of Ocean Sciences, Academic Press, New York (2009)Google Scholar
  13. 13.
    Henry D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Henry D.: Internal equatorial water waves in the f-plane. J. Nonlinear Math. Phys. 22, 499–506 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henry D., Matioc A.-V.: On the symmetry of steady equatorial wind waves. Nonlinear Anal. Real World Appl. 18, 50–56 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hsu H.-C.: An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ionescu-Kruse D.: An exact solution for geophysical equatorial edge waves in the \({\beta}\)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Johnson R.S.: An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical uid mechanics. J. Nonlinear Math. Phys. 22, 475–493 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kogelbauer F.: Symmetric irrotational water waves are traveling waves. J. Differ. Equ. 259, 5271–5275 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Martin C.I.: Dynamics of the thermocline in the equatorial region of the Pacific ocean. J. Nonlinear Math. Phys. 22, 516–522 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Matioc, A.-V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, Art. No. 365501 (2012)Google Scholar
  22. 22.
    Quirchmayr R.: On the existence of benthic storms. J. Nonlinear Math. Phys. 22, 540–544 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Umeyama M.: Eulerian–Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc. A 370, 1687–1702 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaWienAustria

Personalised recommendations