Skip to main content
Log in

Preventing Blow up by Convective Terms in Dissipative PDE’s

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger’s type equations, convective Cahn–Hilliard equation, generalized Kuramoto–Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger’s type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alshin, A., Korpusov, M., Sveshnikov, A.: Blow up in Nonlinear Sobolev Type Equations. De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter Incorporated, Walter (2011)

  2. Ball J.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2) 28(112), 473–486 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellout H., Benachour S., Titi E.: Finite-time singularity versus global regularity for hyper-viscous Hamilton–Jacobi-like equations. Nonlinearity 16, 1967–1989 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bona J., Saut J.: Dispersive blow up of solutions of generalized Korteweg-de Vries equations. J. Differ. Equ. 103, 3–57 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bona J., Sun S., Zhang B.: A nonhomogeneous boundary-value problem for the Kortewegde Vries equation posed on a finite domain. Commun. PDEs 28(7-8), 1391–1436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen T.-F., Levine H., Sacks P.: Analysis of a convective reaction-diffusion equation. Nonlinear Anal. 12, 1349–1370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eden A., Kalantarov V.: 3D convective Cahn–Hilliard equation. Commun. Pure Appl. Anal. 6, 1075–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eden A., Kalantarov V., Zelik S.: Global solvability and blow up for the convective Cahn–Hilliard equations with concave potentials. J. Math. Phys. 54(041502), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Foias C., Holm D., Titi E.: The Navier–Stokes-alpha model of fluid turbulence. Phys. D 152–153, 505–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fursikov A.: On the normal semilinear parabolic equations corresponding to 3D Navier–Stokes system. Syst. Model. Optim. IFIP Adv. Commun. Inform. Technol. 391, 338–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galaktionov V., Mitidieri E., Pohozhaev S.: Blow up for Higher Order Parabolic, Hyperbolic and Schrödinger Equations. CRC Press, Boca Raton (2015)

    Google Scholar 

  12. Hislop P., Sigal I.: Introduction to Spectral Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  13. Kalantarov V., Ladyzhenskaya O.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 10, 53–70 (1978)

    Article  MATH  Google Scholar 

  14. Ladyzhenskaya, O., Solonnikov, V., Uraltseva, N.: Linear and Quasilinear Equations of Parabolic Types. American Mathematical Society, Providence (1968)

  15. Larios, A., Titi, E.: Global regularity vs. finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations. arXiv:1401.1534v1

  16. Larkin N.: Modified KdV equation with a source term in a bounded domain. Math. Methods Appl. Sci. 29(7), 751–765 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Levine H.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \({Pu_t = Au + \mathcal{F}(u)}\) . Arch. Ration. Mech. Anal. 51, 371–386 (1973)

    Article  MATH  Google Scholar 

  18. Levine H.: Stability and instability for solutions of Burgers’ equation with a semilinear boundary condition. SIAM J. Math. Anal. 19, 312–336 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levine H., Payne L.: Nonexistence theorems for the heat equations with nonlinear boundary conditions and for porous medium equation backward in time. J. Differ. Equ. 16, 319–334 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Levine H., Payne L., Sacks P., Straughan B.: Analysis of a convective reaction-diffusion equation II. SIAM J. Math. Anal. 20, 133–147 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martel Y., Merle F.: Blow up in finite time and dynamics of blow up solutions for the L 2-critical generalized KdV equation. J. Am. Math. Soc. 15, 617–664 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pokhozhaev S.: On the blow-up of solutions of the Kuramoto–Sivashinsky equation. Sb. Math. 199, 1355–1365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pokhozhaev S.: On the nonexistence of global solutions of the Korteweg-de Vries equation. J. Math. Sci. (NY) 190, 147–156 (2013)

    Article  MathSciNet  Google Scholar 

  24. Quittner P., Souplet Ph.: Superlinear parabolic problems. Blow up global existence and steady states. Birkhauser Advanced Texts, Basel (2007)

    MATH  Google Scholar 

  25. Souplet P., Weissler F.: Poincares inequality and global solutions of a nonlinear parabolic equation. Ann. Inst. H. Poincare Anal. Non Lineaire 16, 335–371 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Souplet P., Weissler F.: Self-similar subsolutions and blowup for nonlinear parabolic equations. J. Math. Anal. Appl. 212, 60–74 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. American Mathematical Society, Providence (2006)

  28. Tersenov A.: The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations. Ann. Inst. H. Poincare Anal. Non Lineaire 21, 533–541 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Tersenov A.: A condition guaranteeing the abscence of the blow-up phenomenon for the generalized Burgers equation. Nonlinear Anal. 75, 5119–5122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yushkov E.: Blowup in Korteweg-de Vries-type systems. Theor. Math. Phys. 173, 1498–1506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varga Kalantarov.

Additional information

Communicated by A.V. Fursikov

This work is partially supported by the Grant 14-41-00044 of RSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin, B., Kalantarov, V. & Zelik, S. Preventing Blow up by Convective Terms in Dissipative PDE’s. J. Math. Fluid Mech. 18, 463–479 (2016). https://doi.org/10.1007/s00021-016-0270-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0270-9

Mathematics Subject Classification

Keywords

Navigation