Skip to main content

Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

Abstract

In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the \({\beta}\)-plane approximation at the equator which incorporates a constant underlying current.

This is a preview of subscription content, access via your institution.

References

  1. Andrews D.G., McIntyre M.E.: An exact theory of waves on a Lagrangian mean flow. J. Fluid Mech. 89, 609–646 (1978)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. Bennett A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Bühler O.: Waves and Mean Flows. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Constantin A.: Edge waves along a sloping beach. J. Phys. A 34(45), 9723–9731 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. Constantin A.: On the deep water wave motion. J. Phys. A 34(7), 1405–1417 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81. SIAM, Phillapedia (2011)

  8. Constantin A.: Particle trajectories in extreme Stokes waves. IMA J. Appl. Math. 77, 293–307 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  9. Constantin A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)

    ADS  Article  Google Scholar 

  10. Constantin A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    ADS  Article  Google Scholar 

  11. Constantin A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    ADS  Article  Google Scholar 

  12. Constantin A., Ehrnström M., Villari G.: Particle trajectories in linear deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336–1344 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  13. Constantin A., Germain P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    ADS  Article  Google Scholar 

  14. Constantin A., Johnson R.S.: The dynamics of waves interacting with the equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  15. Constantin A., Villari G.: Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 1–18 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. Cushman-Roisin B., Beckers J.-M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101. Academic, San Diego (2011)

    MATH  Google Scholar 

  17. Fedorov A.V., Brown J.N.: Equatorial waves. In: Steele, J. (eds) Encyclopedia of Ocean Sciences, pp. 3679–3695. Academic, San Diego (2009)

    Google Scholar 

  18. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  19. Genoud F., Henry D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  20. Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15(Sup 2), 87–95 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  21. Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not. 13, Art. ID 23405 (2006)

  22. Henry, D.: On the deep-water Stokes flow. Int. Math. Res. Not. 1–7, Art. ID rnn 071 (2008)

  23. Henry D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. Henry D.: Exact equatorial water waves in the f-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  25. Henry D., Hsu H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. Henry D., Hsu H.-C.: Instability of equatorial water waves in the f-plane. Discret. Contin. Dyn. Syst. 35, 909–916 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  27. Ionescu-Kruse D.: Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13–27 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  28. Ionescu-Kruse D.: An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  29. Izumo T.: The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean. Ocean Dyn. 55, 110–123 (2005)

    ADS  Article  Google Scholar 

  30. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  31. Longuet-Higgins M.S.: Mass transport in water waves. Philos. Trans. R. Soc. Lond. A 245, 535–581 (1953)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. Longuet-Higgins M.S.: On the transport of mass by time-varying ocean currents. Deep Sea Res. 16, 431–447 (1969)

    Google Scholar 

  33. Lyons T.: Particle trajectories in extreme Stokes waves over infinite depth. Discret. Contin. Dyn. Syst. 34, 3095–3107 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  34. Matioc A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  35. Matioc A.V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  36. Mollo-Christensen E.: Gravitational and Geostrophic Billows: Some Exact Solutions. J. Atmos. Sci. 35, 1395–1398 (1978)

    ADS  Article  Google Scholar 

  37. Monismith S.G., Cowen E.A., Nepf H.M., Magnaudet J., Thais L.: Laboratory observations of mean flow under surface gravity waves. J. Fluid Mech. 573, 131–147 (2007)

    ADS  Article  MATH  Google Scholar 

  38. Sastre-Gomez S.: Global diffeomorphisms of the Lagrangian flow-map defining equatorially trapped water waves. Nonlinear Anal. A 125, 725–731 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  39. Stokes G.G.: On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441–445 (1847)

    Google Scholar 

  40. Stuhlmeier R.: On edge waves in stratified water along a sloping beach. J. Nonlinear Math. Phys. 18, 127–137 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. Weber, J.E.H.: Do we observe Gerstner waves in wave tank experiments? Wave Motion 48, 301–309 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Henry.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henry, D., Sastre-Gomez, S. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current. J. Math. Fluid Mech. 18, 795–804 (2016). https://doi.org/10.1007/s00021-016-0262-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0262-9

Mathematics Subject Classification

  • 76B15
  • 74G05
  • 86A05

Keywords

  • Geophysical water waves
  • explicit solutions
  • mean velocity
  • mass flow