Skip to main content
Log in

Mixed Boundary Value Problems for Stationary Magnetohydrodynamic Equations of a Viscous Heat-Conducting Fluid

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev G.V.: Solvability of control problems for stationary equations of magnetohydrodynamics of a viscous fluid. Sib. Math. J. 45, 197–213 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alekseev G.V.: Solvability of boundary value problem for a stationary MHD model for viscous heat-conducting fluids. Sib. Zh. Ind. Mat. 9, 13–27 (2006) (in Russian)

    MATH  Google Scholar 

  3. Alekseev, G.V.: Optimization in stationary problems of heat and mass transfer and magnetic hydrodynamics. Nauchny Mir. (in Russian) (2010)

  4. Alekseev G.V., Brizitskii R.V.: Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions. Comput. Math. Math. Phys. 45, 2049–2065 (2005)

    MathSciNet  Google Scholar 

  5. Alekseev G.V., Brizitskii R.V.: Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field. Appl. Math. Lett. 32, 13–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alekseev G.V., Smishliaev A.B.: Solvability of the boundary value problems for the Boussinesq equations with inhomogeneous boundary conditions. J. Math. Fluid Mech. 3, 18–39 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Alonso A., Valli A.: Some remarks on the characterization of the space of tangential traces of \({H(\text{curl}; \Omega )}\) and the construction of an extension operator. Manuscr. Math. 89, 159–178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alonso A., Valli A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68, 607–631 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Amara M., Capatina-Papaghiuc D., Trujillo D.: Stabilized finite element method for Navier–Stokes equations with physical boundary conditions. Math. Comput. 76, 1195–1217 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Auchmuty G.: The main inequality of vector field theory. Math. Models Methods Appl. Sci. 14, 79–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auchmuty G., Alexander J.S.: Finite energy solutions of mixed 3d div-curl systems. Q. Appl. Math. 64, 335–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Begue, C., Conca, C., Murat, F., Pironneau, O.: Les equations de Stokes et de Navier–Stokes avec des condition sur la pression. In: Nonlinear partial differential equations and their applications, College de France, Seminar, vol. IX, pp. 179–264 (1988)

  13. Bernard J.M.: Non-standard Stokes and Navier–Stokes problems: existence and regularity in stationary case. Math. Methods Appl. Sci. 25, 627–661 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bernardi C., Hecht F., Verfürth R.: A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions. ESAIM M2AN 43, 1185–1201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Branover, H., Unger, Y. (eds.): Metallurgical Technologies Energy Conversion and Magnetohydrodynamics Flows. Numerical Institute of Aeronautics and Astronautics (1993)

  16. Brizitskii R.V., Tereshko D.A.: On the solvability of boundary value problems for the stationary magnetohydrodynamic equations with inhomogeneous mixed boundary conditions. Differ. Equ. 43, 246–258 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Conca C., Murat F., Pironneau O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20, 279–318 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Conca C., Parés C., Pironneau O., Thiriet M.: Navier–Stokes equations with imposed pressure and velocity fluxes. Intern. J. Numer. Methods Fluids. 20, 267–287 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Consiglieri L., Nečasová Š., Sokolowski J.: Incompressible Maxwell–Boussinesq approximation: existence, uniqueness and shape sensitivity. Control Cybern. 38, 1193–1215 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Consiglieri L., Nečasová Š., Sokolowski J.: New approach to the incompressible Maxwell–Boussinesq approximation. Existence, uniqueness and shape sensitivity. J. Differ. Equ. 249, 3052–3080 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Costabel M.: A remark on the regularity of solutions of Maxwell’s equations on Lipshitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dubois F., Salaün M., Salmon S.: Vorticity–velocity–pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82, 1395–1451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dyer R.H., Edmunds D.E.: On the existence of solutions of the equations of magnetohydrodynamics. Arch. Ration. Mech. Anal. 9, 403–410 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ebmeyer C., Frehse J.: Steady Navier–Stokes equations with mixed boundary value conditions in three-dimensional Lipshitzian domains. Math. Ann. 319, 349–381 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernandes P., Gilardi G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Methods Appl. Sci. 7, 957–991 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Foias C., Temam R.: Remarques sur les equations de Navier–Stokes stationnaires et les phenomens successifs de bifurcations. Ann. Scuola Norm. Sup. Pise 5, 29–63 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II. Springer (1994)

  28. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. Theory and Algorithms. Springer-Verlag (1986)

  29. Gunzburger M.D., Meir A.J., Peterson J.S.: On the existence, uniqueness, and finite element approximation of solution of the equation of stationary, incompressible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kim T., Cao D.: Some properties on the surfaces of vector fields and its application to the Stokes and Navier–Stokes problem with mixed boundary conditions. Nonlinear Anal. 113, 94–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kress R.: Ein kombiniertes Dirichlet–Neumannsches Randwertproblem bei harmonischen Vektorfeldern. Arch. Ration. Mech. Anal. 42, 40–49 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ladyzhenskaya O.A., Solonnikov V.A.: On the solvability of unsteady motion problems in magnetohydrodynamics. Trudy Math. Inst. Steklov 59, 115–173 (1960) (in Russian)

    MATH  Google Scholar 

  33. Marusic S.: On the Navier–Stikes system with pressure boundary condition. Ann. Univ. Ferrara 53, 319–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maz’ya V., Rossmann J.: Mixed boundary value problems for the Navier–Stokes system in polyhedral domains. Arch. Ration. Mech. Anal. 194, 669–712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meir A.J.: The equation of stationary, incompressible magnetohydrodynamics with mixed boundary conditions. Comp. Math. Appl. 25, 13–29 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meir A.J., Schmidt P.G.: A velocity–current formulation for stationary MHD flow. Appl. Math. Comput. 65, 95–109 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Meir A.J., Schmidt P.G.: Variational methods for stationary MHD flow under natural interface conditions. Nonlinear Anal. 26, 659–689 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meir A.J., Schmidt P.G.: On electromagnetically and thermally driven liquid-metal flows. Nonlinear Anal. 47, 3281–3294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pironneau O.: Conditions aux limites sur la pression pour les equations de Stokes et de Navier–Stokes. C.R. Acad. Sci. Ser. I 303, 403–406 (1986)

    MathSciNet  MATH  Google Scholar 

  40. Schotzau D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sermange M., Temmam R.: Some mathematical questions related to the MHD equations. Commun. Appl. Math. 36, 635–644 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Skalak Z., Kucera P.: An existence theorem for the Boussinesq equations with non-Dirichlet boundary conditions. Appl. Math. 45, 81–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Solonnikov V.: On some stationary boundary value problems in magnetohydrodynamics. Trudy Mat. Inst. Steklov 59, 174–187 (1960) (in Russian)

    MathSciNet  Google Scholar 

  44. Solonnikov V.A., Schadilov E.B.: On boundary value problem for stationary Navier–Stokes system. Trudy Mat. Inst. Steklov 125, 196–210 (2000) (in Russian)

    Google Scholar 

  45. Villamizar-Roa E.J., Lamos-Diaz H., Arenas-Dias G.: Very weak solutions for the magnetohydrodynamic type equations. Discr. Contin. Dynam. Syst. Ser. B 10, 957–972 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Walker, J.S.: Large interaction parameter magnetohydrodynamics and applications in fusion reactor technology. In: Buckmaster, J. (ed.) Fluid Mechanics in Energy Conversion. SIAM (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Alekseev.

Additional information

Communicated by O. Pironneau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, G. Mixed Boundary Value Problems for Stationary Magnetohydrodynamic Equations of a Viscous Heat-Conducting Fluid. J. Math. Fluid Mech. 18, 591–607 (2016). https://doi.org/10.1007/s00021-016-0253-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0253-x

Mathematics Subject Classification

Keywords

Navigation