Skip to main content
Log in

Existence and Uniqueness Theorems for the Two-Dimensional Ericksen–Leslie System

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we study the two dimensional Ericksen–Leslie equations for the nematodynamics of liquid crystals if the moment of inertia of the molecules does not vanish. We prove short time existence and uniqueness of strong solutions for the initial value problem in two situations: the space-periodic problem and the case of a bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its time derivative. We also show that the speed of propagation of the director field is finite and give an upper bound for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. de Gennes P.G., Prost J.: The physics of liquid crystals. Clarendon Press, Oxford (1993)

    Google Scholar 

  2. Chechkin G.A., Ratiu T.S., Romanov M.S., Samokhin V.N.: Nematic liquid crystals. Existence and uniqueness of periodic solutions to Ericksen–Leslie equations. Bull. Ivan Fedorov Moscow State Univ. Print. Art 12, 139–151 (2012)

    Google Scholar 

  3. Ratiu, T.S., Romanov, M.S., Chechkin, G.A.: Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density. J. Math. Sci. 186(2), 322–329 (2012) [Translated from Problemy Mat. Analiza 66, 167–173 (2012)]

  4. Chechkin, G.A., Chechkina, T.P., Ratiu, T.S., Romanov, M.S.: Nematodynamics and random homogenization. Appl. Anal. doi:10.1080/00036811.2015.1036241 (2015, Online first)

  5. Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Article  MathSciNet  Google Scholar 

  6. Ericksen J.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  7. Leslie F.: Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math. 19, 357–370 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leslie F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ericksen J.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987)

    MathSciNet  Google Scholar 

  10. Leslie F.: Continuum theory for nematic liquid crystals. Continuum Mech. Thermodyn. 4(3), 167–175 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chandrasekhar S.: Liquid crystals. Cambridge Univ. Press, Cambridge (1992)

    Book  Google Scholar 

  12. Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Rat. Mech. Anal. 154(2), 135–156 (2000) doi:10.1007/s002050000102

    Article  MathSciNet  MATH  Google Scholar 

  13. Gay-Balmaz F., Ratiu T.S.: The geometric structure of complex fluids. Adv. Appl. Math. 42, 176–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin F.H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MATH  Google Scholar 

  15. Lin F.H., Liu C.: Nonparabolic dissipative system modeling the ow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995)

    Article  MATH  Google Scholar 

  16. Shkoller S.: Well-posedness and global attractors for liquid crystals on Riemannian manifolds. Commun. Partial Differ. Equ. 27, 1103–1137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hong M.C.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40, 15–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin F.H., Liu J.Y., Wang C.Y.: Liquid crystal flows in two dimensions. Arch. Rat. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong M.C., Xin Z.P.: Global existence of solutions of the liquid crystal ow for the Oseen–Frank model in \({{\mathbb{R}^{2}}}\). Adv. Math. 231, 1364–1400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang C.Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jiang F., Jiang S., Wang D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Rational Mech. Anal. 214, 403–451 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hieber, M., Nesensohn, M., Prüss, J., Schade, K.: Dynamics of nematic liquid crystal flows: the quasilinear approach. Ann. Inst. H. Poincaré, Analyse Nonlinéaire (2014, to appear). doi:10.1016/j.anihpc.2014.11.001

  23. Ratiu, T.S., Romanov, M.S., Samokhin, V.N., Chechkin, G.A.: Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation. Dokl. Akad. Nauk 462(5), 519–523 (2015) [English translation Doklady Mathematics 91(3), 354–358 (2015)]

  24. Ladyzhenskaya O., Uraltseva N.: Linear and quasilinear elliptic equations. Academic Press, New York (1968)

    Google Scholar 

  25. Sobolev, S.L.: Some applications of functional analysis in mathematical physics, 3rd edn. Translations of Mathematical Monographs Series, vol. 90. AMS Press, Providence, Rhode Island (1991)

  26. Mikhailov V.P.: Partial differential equations. Mir (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor S. Ratiu.

Additional information

Communicated by M. Hieber

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechkin, G.A., Ratiu, T.S., Romanov, M.S. et al. Existence and Uniqueness Theorems for the Two-Dimensional Ericksen–Leslie System. J. Math. Fluid Mech. 18, 571–589 (2016). https://doi.org/10.1007/s00021-016-0250-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0250-0

Mathematics Subject Classification

Keywords

Navigation