Skip to main content
Log in

On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

By introducing a new a priori estimate for the \({b_{3}}\)-equation, we establish some regularity criteria for the weak solutions of the 3D incompressible MHD equations in terms of one velocity component and two magnetic field components. Our results improve some recent works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duvaut G., Lions J.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wu J.: Viscous and inviscid magnetohydrodynamics equations. J. Anal. Math. 73, 251–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu J.: Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12, 395–413 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wu J.: Regularity results for weak solutions of the 3D MHD equations. Discrete Cont. Dyn. Syst. 10, 543–556 (2004)

    Article  MATH  Google Scholar 

  6. He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zhou Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 12, 881–886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mahalov A., Nicolaenko B., Shilkin T.: \({L^{3,\infty}}\)-solutions to the MHD equations. J. Math. Sci. 143, 2911–2923 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chen Q., Miao C., Zhang Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ji E., Lee J.: Some regularity criteria for the 3D incompressible magnetohydrodynamics. J. Math. Anal. Appl. 369, 317–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao C., Wu J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jia X., Zhou Y.: Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal. Real World Appl. 13, 410–418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ni L., Guo Z., Zhou Y.: Some new regularity criteria for the 3D MHD equations. J. Math. Anal. Appl. 396, 108–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin H., Du L.: Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions. Nonlinearity 26, 219–239 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jia X., Zhou Y.: Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinet. Relat. Models 7, 291–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yamazaki, K.: Component reduction for regularity criteria of the three-dimensional magnetohydrodynamics systems. Electron. J. Differ. Equ. 98, (2014), 18 p.

  17. Yamazaki K.: Regularity criteria of MHD system involving one velocity and one current density component. J. Math. Fluid Mech. 16, 551–570 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang Z.: Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component. Nonlinear Anal. 115, 41–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang Z.: Remarks on the global regularity criteria for the 3D MHD equations via two components. Z. Angew. Math. Phys. 66, 977–987 (2015)

    Article  MathSciNet  Google Scholar 

  20. Jia X., Zhou Y.: Ladyzhenskaya–Prodi–Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 \({\times}\) 3 mixture matrices. Nonlinearity 28, 3289–3307 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jia X., Zhou Y.: Remarks on regularity criteria for the Navier–Stokes equations via one velocity component. Nonlinear Anal. Real World Appl. 14, 239–245 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Communicated by K. Pileckas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Zhou, Y. On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component. J. Math. Fluid Mech. 18, 187–206 (2016). https://doi.org/10.1007/s00021-015-0246-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0246-1

Mathematics Subject Classification

Keywords

Navigation