Brennen C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, New York (2005)
Book
MATH
Google Scholar
Bresch, D., Desjardins, B., Ghidaglia, J.-M., Grenier, E.: Global weak solutions to a generic two-fluid model. Arch. Ration. Mech. Anal. 196, 599C629 (2010)
Bresch D., Huang X.D., Li J.: Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system. Commun. Math. Phys. 309, 737–755 (2012)
MathSciNet
Article
ADS
MATH
Google Scholar
Byrne H.M., Owen M.R.: A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626 (2004)
MathSciNet
Article
MATH
Google Scholar
Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)
MathSciNet
Article
MATH
Google Scholar
Delhaye J.M., Giot M., Riethmuller M.L.: Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering. Von Karman Institute, McGraw-Hill, New York (1981)
Google Scholar
Evje S., Flåtten T.: On the wave structure of two-phase model. SIAM J. Appl. Math. 67(2), 487–511 (2007)
Article
MATH
Google Scholar
Evje S.: Weak solution for a gas–liquid model relevant for describing gas-kick oil wells. SIAM J. Math. Anal. 43, 1887–1922 (2011)
MathSciNet
Article
MATH
Google Scholar
Evje S., Karlsen K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)
MathSciNet
Article
ADS
MATH
Google Scholar
Evje S., Karlsen K.H.: Global weak solutions for a viscous liquid–gas model with singular pressure law. Commun. Pure Appl. Anal. 8, 1867–1894 (2009)
MathSciNet
Article
MATH
Google Scholar
Evje S., Flåtten T., Friis H. A.: Global weak solutions for a viscous liquid–gas model with transition to single-phase gas flow and vacuum. Nonlinear Anal. TMA 70, 3864–3886 (2009)
Article
MATH
Google Scholar
Gavrilyuk S.L., Fabre J.: Lagrangian coordinates for a drift-flux model of a gas–liquid mixture. Int. J. Multiph. Flow 22(3), 453–460 (1996)
Article
MATH
Google Scholar
Hao C.C., Li H.L.: Well-posedness for a multidimensional viscous liquid–gas flow model. SIAM J. Math. Anal. 44(3), 1304–1332 (2012)
MathSciNet
Article
MATH
Google Scholar
Ladyzhenskaya O.A., Solonnikov V.A.: Unique solvability of an initial- and boundary-value problem for viscous incompressible nonhomogeneous fluids. J. Sov. Math. 59, 697–749 (1978)
Article
Google Scholar
Liu Q.Q., Zhu C.J.: Asymptotic behavior of a viscous liquid–gas model with mass-dependent viscosity and vacuum. J. Differ. Equ. 252, 2492–2519 (2012)
Article
ADS
MATH
Google Scholar
Masella J.M., Tran Q.H., Ferre D., Pauchon C.: Transient simulation of two-phase flows in pipes. Int. J. Multiph. Flow 24, 739–755 (1998)
Article
MATH
Google Scholar
Prosperetti A., Tryggvason G.: Computational Methods for Multiphase Flow. Cambridge University Press, New York (2007)
Book
Google Scholar
Shoham, O.: Mechanistic modeling of gas–liquid two-phase flow in pipes. SPE (2006)
Yao L., Zhang T., Zhu C.-J.: Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid–gas two-phase flow model. SIAM J. Math. Anal. 42(4), 1874–1897 (2010)
MathSciNet
Article
MATH
Google Scholar
Yao L., Zhu C.-J.: Free boundary value problem for a viscous two-phase model with mass-dependent viscosity. J. Differ. Equ. 247(10), 2705–2739 (2009)
MathSciNet
Article
ADS
MATH
Google Scholar
Yao L., Zhu C.J.: Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math. Ann. 349, 903–928 (2010)
MathSciNet
Article
Google Scholar