Skip to main content

Analysis of a Compressible Two-Fluid Stokes System with Constant Viscosity

Abstract

Basic properties of a reduced viscous compressible gas–liquid two-fluid model are explored. The model is composed of two conservation laws representing mass balance for gas and liquid coupled to two elliptic equations (Stokes system) for the two fluid velocities and obtained by ignoring acceleration terms in the full momentum equations. First, we present a result that shows existence and uniqueness of regular solutions for a fixed time T 0 > 0 which depends on the initial data and the constant viscosity coefficients. Moreover, T 0 can be large when the viscosity coefficients are large. However, for a fixed set of viscosity coefficients, we conjecture that the smooth solution might blow up, at least, as time tends to infinity. This result is backed up by considering a numerical example for a fixed set of viscosity coefficients demonstrating that for smooth and small initial data with no single-phase regions, the solution may tend to produce both single-phase regions and blow-up of mass gradients as time becomes large.

This is a preview of subscription content, access via your institution.

References

  1. Brennen C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  2. Bresch, D., Desjardins, B., Ghidaglia, J.-M., Grenier, E.: Global weak solutions to a generic two-fluid model. Arch. Ration. Mech. Anal. 196, 599C629 (2010)

  3. Bresch D., Huang X.D., Li J.: Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system. Commun. Math. Phys. 309, 737–755 (2012)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  4. Byrne H.M., Owen M.R.: A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  5. Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. Delhaye J.M., Giot M., Riethmuller M.L.: Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering. Von Karman Institute, McGraw-Hill, New York (1981)

    Google Scholar 

  7. Evje S., Flåtten T.: On the wave structure of two-phase model. SIAM J. Appl. Math. 67(2), 487–511 (2007)

    Article  MATH  Google Scholar 

  8. Evje S.: Weak solution for a gas–liquid model relevant for describing gas-kick oil wells. SIAM J. Math. Anal. 43, 1887–1922 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. Evje S., Karlsen K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  10. Evje S., Karlsen K.H.: Global weak solutions for a viscous liquid–gas model with singular pressure law. Commun. Pure Appl. Anal. 8, 1867–1894 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  11. Evje S., Flåtten T., Friis H. A.: Global weak solutions for a viscous liquid–gas model with transition to single-phase gas flow and vacuum. Nonlinear Anal. TMA 70, 3864–3886 (2009)

    Article  MATH  Google Scholar 

  12. Gavrilyuk S.L., Fabre J.: Lagrangian coordinates for a drift-flux model of a gas–liquid mixture. Int. J. Multiph. Flow 22(3), 453–460 (1996)

    Article  MATH  Google Scholar 

  13. Hao C.C., Li H.L.: Well-posedness for a multidimensional viscous liquid–gas flow model. SIAM J. Math. Anal. 44(3), 1304–1332 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  14. Ladyzhenskaya O.A., Solonnikov V.A.: Unique solvability of an initial- and boundary-value problem for viscous incompressible nonhomogeneous fluids. J. Sov. Math. 59, 697–749 (1978)

    Article  Google Scholar 

  15. Liu Q.Q., Zhu C.J.: Asymptotic behavior of a viscous liquid–gas model with mass-dependent viscosity and vacuum. J. Differ. Equ. 252, 2492–2519 (2012)

    Article  ADS  MATH  Google Scholar 

  16. Masella J.M., Tran Q.H., Ferre D., Pauchon C.: Transient simulation of two-phase flows in pipes. Int. J. Multiph. Flow 24, 739–755 (1998)

    Article  MATH  Google Scholar 

  17. Prosperetti A., Tryggvason G.: Computational Methods for Multiphase Flow. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  18. Shoham, O.: Mechanistic modeling of gas–liquid two-phase flow in pipes. SPE (2006)

  19. Yao L., Zhang T., Zhu C.-J.: Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid–gas two-phase flow model. SIAM J. Math. Anal. 42(4), 1874–1897 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  20. Yao L., Zhu C.-J.: Free boundary value problem for a viscous two-phase model with mass-dependent viscosity. J. Differ. Equ. 247(10), 2705–2739 (2009)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  21. Yao L., Zhu C.J.: Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math. Ann. 349, 903–928 (2010)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steinar Evje.

Additional information

Communicated by G.-Q. Chen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evje, S., Wen, H. Analysis of a Compressible Two-Fluid Stokes System with Constant Viscosity. J. Math. Fluid Mech. 17, 423–436 (2015). https://doi.org/10.1007/s00021-015-0215-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0215-8

Mathematics Subject Classification

  • 76T10
  • 76N10
  • 65M12
  • 35L60

Keywords

  • Two-fluid model
  • Navier–Stokes
  • wellbore flow systems
  • cell dynamics
  • existence
  • uniqueness
  • blow-up