Skip to main content
Log in

A Unified Approach to Regularity Problems for the 3D Navier-Stokes and Euler Equations: the Use of Kolmogorov’s Dissipation Range

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

Motivated by Kolmogorov’s theory of turbulence we present a unified approach to the regularity problems for the 3D Navier-Stokes and Euler equations. We introduce a dissipation wavenumber \({\Lambda(t)}\) that separates low modes where the Euler dynamics is predominant from the high modes where the viscous forces take over. Then using an indifferent to the viscosity technique we obtain a new regularity criterion which is weaker than every Ladyzhenskaya-Prodi-Serrin condition in the viscous case, and reduces to the Beale-Kato-Majda criterion in the inviscid case. In the viscous case we prove that Leray-Hopf solutions are regular provided \({\Lambda \in L^{5/2}}\) , which improves our previous \({\Lambda \in L^\infty}\) condition. We also show that \({\Lambda \in L^1}\) for all Leray-Hopf solutions. Finally, we prove that Leray-Hopf solutions are regular when the time-averaged spatial intermittency is small, i.e., close to Kolmogorov’s regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61–66 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bjorland, C., Vasseur, A.: Weak in space, log in time improvement of the Ladyzenskaja-P]rodi-Serrin criteria. http://arxiv.org/abs/0912.2969

  4. Cao C., Titi E.S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2661 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheskidov A., Shvydkoy R.: The regularity of weak solutions of the 3D Navier-Stokes equations in \({B^{-1}_{\infty,\infty}}\) . Arch. Ration. Mech. Anal. 195(1), 159–169 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. da Veiga H.B.: A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2(2), 99–106 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frisch, U.: Turbulence. Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov

  8. Iskauriaza L., Serëgin G.A., Shverak V.: \({L_{3,\infty}}\) -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3–44 (2003)

    Article  Google Scholar 

  9. Kato T.: Nonstationary ows of viscous and ideal uids in R 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  10. Kolmogoroff A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305 (1941)

    MathSciNet  Google Scholar 

  11. Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242(2), 251–278 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  13. Planchon F.: An extension of the Beale-Kato-Majda criterion for the Euler equations. Comm. Math. Phys. 232(2), 319–326 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Tao T.: Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE 2(3), 361–366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Temam, R.: Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shvydkoy.

Additional information

The work of A. Cheskidov is partially supported by NSF Grant DMS–1108864.

R. Shvydkoy acknowledges the support of NSF grants DMS–0907812 and DMS–1210896.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheskidov, A., Shvydkoy, R. A Unified Approach to Regularity Problems for the 3D Navier-Stokes and Euler Equations: the Use of Kolmogorov’s Dissipation Range. J. Math. Fluid Mech. 16, 263–273 (2014). https://doi.org/10.1007/s00021-014-0167-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0167-4

Keywords

Navigation