Journal of Mathematical Fluid Mechanics

, Volume 16, Issue 3, pp 419–429 | Cite as

The L2 Essential Spectrum of the 2D Euler Operator

Article

Abstract

Even in two dimensions, the spectrum of the linearized Euler operator is notoriously hard to compute. In this paper we give a new geometric calculation of the essential spectrum for 2D flows. This generalizes existing results—which are only available when the flow has arbitrarily long periodic orbits—and clarifies the role of individual streamlines in generating essential spectra.

Mathematics Subject Classification (2010)

Primary 76B99 Secondary 35Q31 

Keywords

Euler equation essential spectrum Coarea formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balmforth N.J., Morrison P.J.: A necessary and sufficient instability condition for inviscid shear flow. Stud. Appl. Math. 102(3), 309–344 (1999)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Belenkaya, L., Friedlander, S., Yudovich, V.: The unstable spectrum of oscillating shear flows. SIAM J. Appl. Math. 59(5):1701–1715 (1999, electronic)Google Scholar
  3. 3.
    Chavel, I.: Riemannian Geometry: A Modern Introduction, vol. 98 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  4. 4.
    Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford Science Publications, New York (1987)Google Scholar
  5. 5.
    Engel, K.J, Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000, With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt)Google Scholar
  6. 6.
    Ragnar F.: Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ. Norske Vid.-Akad. Oslo 17(6), 52 (1950)MathSciNetGoogle Scholar
  7. 7.
    Gerald B.F: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  8. 8.
    Susan F., Misha V., Victor Y.: Unstable eigenvalues associated with inviscid fluid flows. J. Math. Fluid Mech. 2(4), 365–380 (2000)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Louis N.H.: The number of unstable modes in hydrodynamic stability problems. J. Mécanique 3, 433–443 (1964)Google Scholar
  10. 10.
    Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin (1995, Reprint of the 1980 edition)Google Scholar
  11. 11.
    Lin, Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35(2):318–356 (2003, electronic)Google Scholar
  12. 12.
    Zhiwu L.: Some stability and instability criteria for ideal plane flows. Comm. Math. Phys. 246(1), 87–112 (2004)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    da Costa Lopes Filho M., Lopes H.J.N.: Vortex dynamics on a domain with holes. Theor. Comput. Fluid Dyn. 24(1–4), 51–57 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Milnor, J.: Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton (1963)Google Scholar
  15. 15.
    Rayleigh L.: On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. S1-11(1), 57 (1880)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Reed M., Simon B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)MATHGoogle Scholar
  17. 17.
    Shvidkoy, R., Latushkin, Y.: The essential spectrum of the linearized 2D Euler operator is a vertical band. In: Advances in differential equations and mathematical physics (Birmingham, AL, 2002), vol. 327 of Contemp. Math. pp. 299–304. Amer. Math. Soc., Providence (2003)Google Scholar
  18. 18.
    Shvydkoy, R., Friedlander, S.: On recent developments in the spectral problem for the linearized Euler equation. In: Nonlinear Partial Differential Equations and Related Analysis, vol. 371 of Contemp. Math., pp. 271–295. Amer. Math. Soc., Providence (2005)Google Scholar
  19. 19.
    Shvydkoy R., Latushkin Y.: Essential spectrum of the linearized 2D Euler equation and Lyapunov-Oseledets exponents. J. Math. Fluid Mech. 7(2), 164–178 (2005)CrossRefMATHMathSciNetADSGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsUNC Chapel HillChapel HillUSA

Personalised recommendations