Skip to main content
Log in

On Flows of Viscoelastic Fluids of Oldroyd Type with Wall Slip

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the boundary-value problem for the steady isothermal flow of an incompressible viscoelastic liquid of Oldroyd type in a bounded domain with a Navier type slip boundary condition. We prove that under some restrictions on the material constants and the data, there exists a strong solution which is locally unique. The proof is based on a fixed point argument in which the boundary-value problem is decomposed into a transport equation and a Stokes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A 200, 523–541 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Oldroyd J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. A 245, 278–297 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Rajagopal K.R., Srinivasa A.R.: A thermodynamic frame work for rate type fluid models. J. Non Newton. Fluid Mech. 88, 200–227 (2000)

    Article  Google Scholar 

  4. Oliveira P.J.: Alternative derivation of differential constitutive equations of the Oldroyd-B type. J. Non Newton. Fluid Mech. 160, 40–46 (2009)

    Article  MATH  Google Scholar 

  5. Bollada P.C., Phillips T.N.: On the mathematical modelling of a compressible viscoelastic fluid. Arch. Rational Mech. Anal. 205, 1–26 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Renardy M.: Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65, 449–451 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guillopé C., Saut J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guillopé C., Saut J.C.: Global existence and one-dimensional stability of shearing motions of viscoelastic fluids of Oldroyd type. M2AN Math. Model. Numer. Anal. 24, 369–401 (1990)

    MATH  Google Scholar 

  9. Guillopé C., Saut J.C.: Existence and stability of steady flows of weakly viscoelastic fluids. Proc. R. Soc. Edinburgh 119A, 137–158 (1991)

    Article  Google Scholar 

  10. Guillopé, C., Saut, J.C.: Mathematical problems arising in differential models for viscoelastic fluids. In: Rodrigues, J.F., Sequeira, A. (eds.) Mathematical Topics in Fluid Mechanics, Pitman Res. Notes Math. Ser., vol. 274, pp. 64–92. Longman Scientific & Technical, Harlow, (1992)

  11. Fernández-Cara E., Guillén F., Ortega R.R.: Some theoretical results concerning non Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Pisa Cl. Sci. (4) 26, 1–29 (1998)

    MATH  Google Scholar 

  12. Matušů-Nečasová S., Sequeira A., Videman J.H.: Existence of classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Meth. Appl. Sci. 22, 449–460 (1999)

    Article  MATH  Google Scholar 

  13. Talhouk R.: Existence results for steady flow of weakly compressible viscoelastic fluids with a differential constitutive law. Differ. Integral Equ. 12, 741–772 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Fontelos M.A., Friedman A.: Stationary non-Newtonian fluid flows in channel-like and pipe-like domains. Arch. Rational Mech. Anal. 151, 1–43 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Lions P.L., Masmoudi N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. 21B, 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  16. Pileckas K., Sequeira A., Videman J.H.: Steady flows of viscoelastic fluids in domains with outlets to infinity. J. Math. Fluid Mech. 2, 185–218 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Besbes S.D., Guillopé C.: Non-isothermal flows of viscoelastic incompressible fluids. Nonlinear Anal. 44, 919–942 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fontelos M.A., Friedman A.: Analysis of the stick-slip problem for non-Newtonian flows. Commun. Part. Differ. Equ. 26, 461–536 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Arada N., Sequeira A.: Strong steady solutions for a generalized Oldroyd-B model with shear-dependent viscosity in a bounded domain. Math. Models Methods Appl. Sci. 13, 1303–1323 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dmitrienko V.T., Kirane M., Zvyagin V.G.: On weak solutions for generalized Oldroyd model for laminar and turbulent flows of nonlinear viscous-elastic fluid. Nonlinear Anal. 53, 197–226 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Guillopé C., Talhouk R.: Steady flows of slightly compressible viscoelastic fluids of Jeffreys’ type around an obstacle. Differ. Integral Equ. 16, 1293–1320 (2003)

    MATH  Google Scholar 

  22. Chupin L.: Some theoretical results concerning diphasic viscoelastic flows of the Oldroyd kind. Adv. Differ. Equ. 9, 1039–1078 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Molinet L., Talhouk R.: Existence and stability results for 3-D regular flows of viscoelastic fluids of White-Metzner type. Nonlinear Anal. 58, 813–833 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Molinet L., Talhouk R.: On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. NoDEA Nonlinear Differ. Equ. Appl. 11, 349–359 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vorotnikov D.A., Zvyagin V.G.: On the solvability of the initial-value problem for the motion equations of nonlinear viscoelastic medium in the whole space. Nonlinear Anal. 58, 631–656 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Arada N., Sequeira A.: Steady flows of shear-dependent Oldroyd-B fluids around an obstacle. J. Math. Fluid Mech. 7, 451–483 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Lin F.-H., Liu C., Zhang P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Salvi R.: Existence and uniqueness results for non-Newtonian fluids of the Oldroyd type. Int. Rev. Pure Appl. Math. 2005, 159–212 (2005)

    Google Scholar 

  29. Salvi, R.: Existence and uniqueness results for non-Newtonian fluids of the Oldroyd type in unbounded domains. In: Regularity and other aspects of the Navier–Stokes equations, Banach Center Publications, vol. 70, pp. 209–237. Polish Acad. Sci., Warsaw (2005)

  30. Nečasová S., Penel P.: Incompressible non-Newtonian fluids: time asymptotic behaviour of solutions. Math. Meth. Appl. Sci. 29, 1615–1630 (2006)

    Article  MATH  Google Scholar 

  31. Bayada G., Chupin L., Martin S.: Viscoelastic fluids in a thin domain. Q. Appl. Math. 65, 625–651 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Bonito A., Clément P., Picasso M.: Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow. Numer. Math. 107, 213–255 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chen Q., Miao C.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal. 68, 1928–1939 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lei Z., Liu C., Zhou Y.: Global solutions for incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 188, 371–398 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Lin F., Zhang P.: On the initial-value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558 (2008)

    Article  MATH  Google Scholar 

  36. Zvyagin V.G., Vorotnikov D.A.: Approximating-topological methods in some problems of hydrodynamics. J. Fixed Point Theory Appl. 3, 23–49 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bayada G., Chupin L., Grec B.: Viscoelastic fluids in thin domains: a mathematical proof. Asymptot. Anal. 64, 185–211 (2009)

    MATH  MathSciNet  Google Scholar 

  38. Renardy M.: Global existence of solutions for shear flow of certain viscoelastic fluids. J. Math. Fluid Mech. 11, 91–99 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Guillopé C., Salloum Z., Talhouk R.: Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discret. Contin. Dyn. Syst. Ser. B 14, 1001–1028 (2010)

    Article  MATH  Google Scholar 

  40. He L., Xi L.: Global well-posedness for viscoelastic fluid system in bounded domains. SIAM J. Math. Anal. 42, 2610–2625 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Salloum Z.: Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Commun. Pure Appl. Anal. 9, 625–642 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Qian J., Zhang Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Rational Mech. Anal. 198, 835–868 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Laadj T., Renardy M.: Initial value problems for creeping flow of Maxwell fluids. Nonlinear Anal. 74, 3614–3632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhao W.: The global existence of small solutions to the Oldroyd-B model. Chin. Ann. Math. 32B, 215–222 (2011)

    Article  Google Scholar 

  45. Constantin P., Kliegl M.: Note on the global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Rational Mech. Anal. 206, 725–740 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Hieber M., Naito Y., Shibata Y.: Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252, 2617–2629 (2012)

    ADS  MATH  MathSciNet  Google Scholar 

  47. Marchal J.M., Crochet M.J.: A new mixed finite element for calculating viscoelastic flow. J. Non Newton. Fluid Mech. 26, 77–114 (1987)

    Article  MATH  Google Scholar 

  48. El Hadj M., Tanguy P.A., Fortin A.: A numerical comparison of two decoupled methods for the simulation of viscoelastic fluid flows. Rheol. Acta 29, 342–351 (1990)

    Article  MATH  Google Scholar 

  49. Owens R.G., Phillips T.N.: A spectral domain decomposition method for the planar non-Newtonian stick-slip flow. J. Non Newton. Fluid Mech. 41, 43–79 (1991)

    Article  MATH  Google Scholar 

  50. Rosenberg J., Keunings R.: Numerical integration of differential viscoelastic models. J. Non Newton. Fluid Mech. 39, 269–290 (1991)

    Article  MATH  Google Scholar 

  51. Tanner R.I., Huang X.: Stress singularities in non-Newtonian stick-slip and edge flows. J. Non Newton. Fluid Mech. 50, 135–160 (1993)

    Article  MATH  Google Scholar 

  52. Al Moatassime H., Jouron C.: A Multigrid method for solving steady viscoelastic fluid flow. Comput. Methods Appl. Mech. Eng. 190, 4061–4080 (2001)

    Article  ADS  MATH  Google Scholar 

  53. Ngamaramvaranggul V., Webster M.F.: Viscoelastic simulations of stick-slip and die-swell flows. Int. J. Numer. Methods Fluids 36, 539–595 (2001)

    Article  ADS  MATH  Google Scholar 

  54. Ervin V.J., Miles W.W.: Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41, 457–486 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Ervin V.J., Miles W.W.: Approximation of time-dependent, multi-component, viscoelastic fluid flow. Comput. Methods Appl. Mech. Eng. 194, 2229–2255 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Liakos A.: Finite-element approximation of viscoelastic fluid flow with slip boundary condition. Comput. Math. Appl. 49, 281–294 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Bensaada M., Esselaoui D.: Error estimates for a stabilized finite element method for the Oldroyd B model. J. Math. Anal. Appl. 325, 1042–1059 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Boyaval S., Lelièvre T., Mangoubi C.: Free-energy-dissipative schemes for Oldroyd-B model. M2AN Math. Model. Numer. Anal. 43, 523–561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  59. Howell J.S.: Computation of viscoelastic fluid flows using continuation methods. J. Comput. Appl. Math. 225, 187–201 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Crispell J.C., Ervin V.J., Jenkins E.W.: A fractional step θ-method approximation of time-dependent viscoelastic fluid flow. J. Comput. Appl. Math. 232, 159–175 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  61. Barrett J.W., Boyaval S.: Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 21, 1783–1837 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wesson R.D., Papanastasiou T.C.: Flow singularity and slip velocity in plane extrudate swell computations. J. Non Newton. Fluid Mech. 26, 277–295 (1988)

    Article  MATH  Google Scholar 

  63. Spaid M.A., Homsy G.M.: Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8, 460–478 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Salamon T.R., Bornside D.E., Armstrong R.C., Brown R.A.: Local similarity solutions for the stress field of an Oldroyd-B fluid in the partial-slip/slip flow. Phys. Fluids 9, 2191–2209 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Denn M.M.: Extrusion instabilities and wall slip. Ann. Rev. Fluid. Mech. 33, 265–287 (2001)

    Article  ADS  Google Scholar 

  66. Hatzikiriakos, S.G., Miglers, K.B. (eds.): Polymer Processing Instabilities. Marcel Dekker, New York (2005)

  67. Dealy J.M., Larson R.G.: Structure and Rheology of Molten Polymers. Carl Hanser Verlag, Munich (2006)

    Book  Google Scholar 

  68. Georgiou G.C.: On the stability of the shear flow of a viscoelastic fluid with slip along the fixed wall. Rheol. Acta 35, 39–47 (1996)

    Article  Google Scholar 

  69. Brasseur E., Fyrillas M.M., Georgiou G.C., Crochet M.J.: The time-dependent extrudate-swell problem of an Oldroyd-B fluid with slip along the wall. J. Rheol. 42, 549–566 (1998)

    Article  ADS  Google Scholar 

  70. Fyrillas M.M., Georgiou G.C.: Linear stability diagrams for the shear flow of an Oldroyd-B fluid with slip along the fixed wall. Rheol. Acta 37, 61–67 (1998)

    Article  Google Scholar 

  71. Kavousanakis M.E., Russo L., Siettos C.I., Boudouvis A.G., Georgiou G.C.: A timestepper approach for the systematic bifurcation and stability analysis of polymer extrusion dynamics. J. Non Newton. Fluid Mech. 151, 59–68 (2008)

    Article  MATH  Google Scholar 

  72. Le Roux C.: Steady stokes flows with threshold slip boundary conditions. Math. Models Methods Appl. Sci. 15, 1141–1168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  73. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn. Pure and Applied Mathematics, vol. 40. Academic Press, Amsterdam (2003)

  74. Beirão da Veiga H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9, 1079–1114 (2004)

    MATH  Google Scholar 

  75. Galdi, G.P. An introduction to the mathematical theory of the Navier–Stokes equations. vol. 1: linearized steady problems. Revised edition, Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994)

  76. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  77. Hlavá I., Nečas J.: On inequalities of Korn’s type. II. Applications to linear elasticity. Arch. Rational Mech. Anal. 36, 312–337 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  78. Schauder J.: Der Fixpunktsatz in Funktionalräumen. Studia Math. 2, 171–180 (1930)

    MATH  Google Scholar 

  79. Le Roux C.: Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions. Arch. Rational Mech. Anal. 148, 309–356 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Tani, A., Le Roux C.: Steady-state solutions to the equations of motion of second-grade fluids with general Navier-type slip boundary conditions in Hölder spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 306, 210–228 (2004) (translation in J. Math. Sci. (N. Y.) 130, 4899–4909 (2005))

  81. Le Roux C.: On flows of third-grade fluids with non-linear slip boundary conditions. Int. J. Non Linear Mech. 44, 31–41 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  82. Beirão da Veiga H.: On a stationary transport equation. Ann. Univ. Ferrara Sez. VII Sci. Mat. 32, 79–91 (1986)

    MATH  Google Scholar 

  83. Beirão da Veiga H.: Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. 36, 173–184 (1987)

    MATH  Google Scholar 

  84. Novotný A.: About steady transport equation I—L p-approach in domains with smooth boundaries. Comment. Math. Univ. Carolinae 37, 43–89 (1996)

    MATH  Google Scholar 

  85. Novotný, A.: On the steady transport equation. In: Málek, J., et al. (eds.) Advanced Topics in Fluid Mechanics. Pitman Res. Notes Math. Ser., vol. 392. Longman, Harlow (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiaan Le Roux.

Additional information

Communicated by H. Beirao da Veiga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roux, C. On Flows of Viscoelastic Fluids of Oldroyd Type with Wall Slip. J. Math. Fluid Mech. 16, 335–350 (2014). https://doi.org/10.1007/s00021-013-0159-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0159-9

Mathematics Subject Classification (2010)

Keywords

Navigation