Skip to main content
Log in

Liouville Theorem for the Steady-State Non-Newtonian Navier-Stokes Equations in Two Dimensions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the Liouville type problem of stationary non-Newtonian Navier-Stokes equations in the plane. We prove that weak solutions become trivial for both cases of some shear thickening and thinning flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. online published (2012)

  2. Bogovskiı M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248(5), 1037–1040 (1979)

    MathSciNet  Google Scholar 

  3. Bohme, G.: Non-Newtonian fluid mechanics, North-Holland Series in Applied Mathematics and Mechanics. North-Holland Publishing Co., Amsterdam (1987)

  4. Frehse J., Málek J., Steinhauer M.: An existence result for fluids with shear dependent viscosity-steady flows. Nonlinear Anal. 30, 3041–3049 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fuchs M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 14(3), 421–444 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Fuchs M., Seregin G.: Regularity results for the quasi–static Bingham variational inequality in domensions two and three. Math. Z. 227, 525–541 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fuchs, M., Seregin, G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. In: Lecture notes Math. 1749. Springer, Berlin (2000)

  8. Fuchs M., Zhang G.: Liouville theorems for entire local minimizers of energies defined on the class LlogL and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. Partial Differ. Equ. 44(1–2), 271–295 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I: Linearized Steady Problems, Vol II: Nonlinear Steady Problems. Springer, New York (1994)

    Google Scholar 

  10. Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton Univerasity Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  11. Giaquinta M., Modica G.: Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Gilbarg D., Weinberger H.F.: Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Kaplicky P., Malek J., Stara J.: C 1, α-solutions to a class of nonlinear fluids in the 2D stationary Dirichlet problem. J. Math. sci. 109, 1867–1893 (2002)

    Article  MathSciNet  Google Scholar 

  14. Ladyzhenskaya O.A.: On some new equations for the description of the viscous incompressible fluids and global solvability in the range of the boundary value problems to these equations. Trudy Steklov’s Math. Inst. 102, 85–104 (1967)

    MATH  Google Scholar 

  15. Ladyzhenskaya O.A.: On some modifications of the Navier-Stokes equations for large gradients of velocity. Zapiski Naukhnych Seminarov LOMI 7, 126–154 (1968)

    MATH  Google Scholar 

  16. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flows. Gordon and Beach, New York (1969)

    Google Scholar 

  17. Lions J.L.: Quelques methodes de resolution des preblemes aux limites non lineaires. Dunod, Gauthier-Villars (1969)

    Google Scholar 

  18. Naumann J., Wolf J.: Interior differentiability of weak solutions to the equations of stationary motion of a class of a non-Newtonian fluid. J. Math. Fluid. Mech. 7, 298–313 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Ružička M.: A note on steady flow of fluids with shear dependent viscosity. Nonlinear Anal. 30, 3029–3039 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Triebel H.: Theory of Function Spaces II. Birkhauser, Basel (1992)

    Book  MATH  Google Scholar 

  21. Whitaker S.: Introduction to Fluid Mechanics. Krieger, NY (1986)

    Google Scholar 

  22. Wolf J.: Interior C 1, α-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimension. Bollettino U.M.I. (8) 10(2), 317–340 (2007)

    MATH  Google Scholar 

  23. Zhang, G.: A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. published online (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungkeun Kang.

Additional information

Communicated by G.P. Galdi

Bum Ja Jin’s work was supported by NRF 2011-0007701 and Kyungkeun Kang’s work was supported by NRF-2009-0088692.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, B.J., Kang, K. Liouville Theorem for the Steady-State Non-Newtonian Navier-Stokes Equations in Two Dimensions. J. Math. Fluid Mech. 16, 275–292 (2014). https://doi.org/10.1007/s00021-013-0157-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0157-y

Mathematics Subject Classification (2010)

Keywords

Navigation