Skip to main content
Log in

Blow-Up Scenarios for the 3D Navier–Stokes Equations Exhibiting Sub-Criticality with Respect to the Scaling of One-Dimensional Local Sparseness

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

It is shown that, if the vorticity magnitude associated with a (presumed singular) three-dimensional incompressible Navier–Stokes flow blows-up in a manner exhibiting certain time dependent local structure, then time independent bounds on the L 1 norm of \({|\omega| \log \sqrt{1+ |\omega|^2}}\) follow. The implication is that the volume of the region of high vorticity decays at a rate of greater order than a rate connected to the critical scaling of one-dimensional local sparseness and, consequently, the solution becomes sub-critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Chang D.C., Dafni G., Stein E.M.: Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in \({\mathbb{R}^n}\). Trans. Am. Math. Soc. 351(4), 1605–1661 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen C., Strain R.M., Tsai T., Yau H.T.: Lower bounds on the blow-up rate of the axisymmetric Navier–Stokes equations. II. Comm. Partial Differ. Equ. 34(1–3), 203–232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C., Strain, R.M., Yau, H.T., Tsai, T.: Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int. Math. Res. Not. IMRN (9):16–31 (2008)

  5. Coifman R., Lions P.L., Meyer Y., Semmes S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72(3), 247–286 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Constantin P.: Navier–Stokes equations and area of interfaces. Commun. Math. Phys. 129(2), 241–266 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Constantin P., Foias C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988)

    Google Scholar 

  8. Dascaliuc R., Grujić Z.: Vortex stretching and criticality for the three-dimensional Navier–Stokes equations. J. Math. Phys. 53, 093503 (2012)

    Article  Google Scholar 

  9. Sodin M., Nazarov F., Vol’berg A.: The geometric Kannan-Lovaśz-Simonovits lemma, dimension-free estimates for the distribution function of the values of polynomials, and the distribution of the zeros of random analytic functions. St. Petersburg Math. J. 14, 351–366 (2003)

    MathSciNet  Google Scholar 

  10. Fefferman C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129(3-4), 137–193 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grujić Z.: The geometric structure of the super-level sets and regularity for 3D Navier–Stokes equations. Indiana Univ. Math. J. 50, 1309–1317 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Grujić Z.: A geometric measure-type regularity criterion for solutions to the 3D Navier–Stokes equations. Nonlinearity 26, 289–296 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Grujić Z., Guberović R.: A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 773–778 (2010)

    Article  ADS  MATH  Google Scholar 

  15. Hou T., Li R.: Nonexistence of locally self-similar blow-up for the 3D incompressible Navier–Stokes equations. Discrete Contin. Dyn. Syst. 18(4), 637–642 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iwaniec T., Verde A.: On the operator L(f) =  f log |f|. J. Funct. Anal. 169(2), 391–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koch G., Nadirashvili N., Seregin G.A., Šverák V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vols. 1 and 3 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1996. Incompressible models, Oxford Science Publications

  19. Nečas J., Růžička M., Šverák V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seregin G., Šverák V.: On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 34(1-3), 171–201 (2009)

    Article  MATH  Google Scholar 

  21. Stein, E.M. (ed.): Beijing Lectures in Harmonic Analysis, vol. 112 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1986)

  22. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  23. Tsai, T.: Erratum: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. [Arch. Rational Mech. Anal. 143(1), 29–51 (1988). MR1643650 (99j:35171)]. Arch. Ration. Mech. Anal. 147(4), 363 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Grujić.

Additional information

Communicated by G.P. Galdi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, Z., Grujić, Z. Blow-Up Scenarios for the 3D Navier–Stokes Equations Exhibiting Sub-Criticality with Respect to the Scaling of One-Dimensional Local Sparseness. J. Math. Fluid Mech. 16, 321–334 (2014). https://doi.org/10.1007/s00021-013-0155-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0155-0

Mathematics Subject Classification (2010)

Keywords

Navigation