Skip to main content
Log in

Generalized Resolvent Estimates of the Stokes Equations with First Order Boundary Condition in a General Domain

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain \({\Omega}\) of the N-dimensional Eulidean space \({\mathbb{R}^N, N \geq 2}\). This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter \({\lambda}\) varying in a sector \({\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}\), where \({0 < \sigma < \pi/2}\) and \({\lambda_0 \geq 1}\). The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution \({p \in \hat{W}^1_{q, \Gamma}(\Omega)}\) to the variational problem: \({(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}\) for any \({\varphi \in \hat W^1_{q', \Gamma}(\Omega)}\). Here, \({1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}\) is the closure of \({W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}\) by the semi-norm \({\|\nabla \cdot \|_{L_q(\Omega)}}\), and \({\Gamma}\) is the boundary of \({\Omega}\). In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in \({(\lambda_0, \infty)}\). Our assumption is satisfied for any \({q \in (1, \infty)}\) by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe T.: On a resolvent esstimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer. Math. Methods Appl. Sci. 27(9), 1007–1048 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Abe T., Shibata Y.: On a resolvent estimate of the Stokes equation on an infinite layer. J. Math. Soc. Japan 55(2), 469–497 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H.: Stokes equations in asymptoticallly flat domains and the motion of a free surface. PhD thesis, TU Darmstadt, Shaker, Aachen (2003)

  4. Abels H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers, part I: unique solvability. J. Math. Fluid Mech. 7, 201–222 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Abels H.: Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions. Math. Nachr. 279(4), 1–17 (2006)

    Article  MathSciNet  Google Scholar 

  6. Abels H., Wiegner M.: Resolvent estimates for the Stokes operator on an infinite layer. Differ. Integr. Equ. 18(10), 1081–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Abels H., Terasawa Y.: On Stokes operators with variable viscosity in bounded and unbounded domains. Math. Ann. 344, 381–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  9. Akiyama T., Kasai H., Shibata Y., Tsutsumi M.: On a resolvent estimate of a system of Laplace operators with perfect wall condition. Funk. Ekvaj. 47, 361–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amann H.: Linear and Quasilinear Parabolic Problems, vol. I. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  11. Desch W., Hieber M., Prüß J.: L p-Theory of the Stokes equation in a half space. J. Evol. Equ. 1, 115–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farwig R., Kozono H., Sohr H.: An L q-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farwig R., Ri M.H.: The resolvent problem and H -calculus of the Stokes operator in unbounded cylinders with several exits to infinity. J. Evol. Equ. 7(3), 497–528 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farwig R., Ri M.H.: Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280(9–10), 1061–1082 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes operator in bounded and unbounded domains. J. Math. Soc. Japan 46, 607–643 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, vol I: In: Linearized Steady Problems, Springer tracts in natural philosphy, vol 38. Springer, New York (1994)

  17. Giga Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giga Y.: Domains of fractional powers of the Stokes operator in L r spaces. Arch. Rational Mech. Anal. 89, 251–265 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Grubb G., Solonnikov V.A.: Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69, 217–290 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Geissert M., Hess M., Hieber M., Schwarz C., Stavrakidis K.: Maximal L pL q estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12, 47–60 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hishida, T.: The nonstationary Stokes and Navier-Stokes equations in aperture domains. In: Elliptic and Parabolic Problems (Rolduc/Gaeta. 2001), pp. 126–134. World Scientific Publishing, River Edge (2002)

  22. Kubo T.: The Stokes and Navier-Stokes equations in an aperture domain. J. Math. Soc. Japan 59, 837–859 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kubo T., Shibata Y.: On the Stokes and Navier-Stokes equations in a perturbed half-space. Adv. Differ. Eqs. 10, 695–720 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Miyakawa T.: The L p approach to the Navier-Stokes equations with the Neumann boundary condition. Hiroshima Math. J. 10, 517–537 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Miyakawa T.: On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Saal, J.: Robin boundary conditions and bounded H -calculus for the Stokes operator. PhD thesis, TU Darmstadt, Logos, Berlin (2003)

  27. Shibata, Y.: Remark on a generalized resolvent estimate for the Stokes equation with first order boundary condition, Preprint

  28. Shibata Y., Shimada R.: On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Japan 59, 469–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shibata Y., Shimizu S.: On a resolvent estimate for the Stokes system with Neumann boundary condition. Differ. Int. Eqs. 16(4), 385–426 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Shibata Y., Shimizu S.: On the L p -L q maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Shibata Y., Shimizu S.: On a resolvent estimate of the Stokes system in a half space arising from a free boundary problem for the Navier-Stokes equations. Math. Nachr. 282, 482–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shibata, Y., Shimizu, S.: On the L p -L q maximal regularity of the Stokes problem with first order boundary condition; Model Problem. J. Math. Soc. Japan 64(2), 561–626 (2012)

  33. Schumacher, K.: A chart preserving the normal vector and extensions of normal derivaives in weighted function. Preprint, TU Darmstadt, No. 2510 (2007)

  34. Solonnikov V.A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8, 213–317 (1977)

    Google Scholar 

  35. Steiger, O.: On Navier-Stokes Equations with First Order Boundary Conditions. Dissertation for Dr. sc. nat., Universität Zürich (2004)

  36. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Shibata.

Additional information

To the memory of Professor Rentaro Agemi, a great mathematician, my teacher and dear friend

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, Y. Generalized Resolvent Estimates of the Stokes Equations with First Order Boundary Condition in a General Domain. J. Math. Fluid Mech. 15, 1–40 (2013). https://doi.org/10.1007/s00021-012-0130-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-012-0130-1

Mathematics Subject Classification (2000)

Keywords

Navigation