Skip to main content
Log in

Liouville-Type Theorems for Steady Flows of Degenerate Power Law Fluids in the Plane

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We extend the Liouville-type theorems of Gilbarg and Weinberger and of Koch, Nadirashvili, Seregin and Sverák valid for the stationary variant of the classical Navier–Stokes equations in 2D to the degenerate power law fluid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams R.A.: Sobolev Spaces. Academic Press, New York-San Francisco-London (1975)

    MATH  Google Scholar 

  3. Fuchs M.: Liouville Theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 14, 421–444 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Fuchs, M., Seregin, G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics, vol. 1749. Springer, Berlin (2000)

  5. Fuchs M., Zhang G.: Liouville theorems for entire local minimizers of energies defined on the class LlogL and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. Partial Differ. Equ. 44(1-2), 271–295 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuchs M., Zhong X.: A note on a Liouville-type result of Gilbarg and Weinberger for the stationary Navier–Stokes equations in 2D. J. Math. Sci. 178(6), 695–703 (2011)

    Article  MathSciNet  Google Scholar 

  7. Fusco N., Hutchinson J.: Partial regularity for minimisers of certain functionals having nonquadratic growth. Ann. Mat. Pura Appl. (4) 155, 1–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, vol. I. Linearized Steady Problems. Springer Tracts in Natural Philosophy, no. 38. Springer, New York (1994)

  9. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, vol. II. Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, no. 39. Springer, New York (1994)

  10. Giaquinta M., Modica G.: Nonlinear systems of the type of stationary Navier–Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Giaquinta M., Modica G.: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscr. Math. 57(1), 55–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin-New York (1977)

    Book  Google Scholar 

  13. Gilbarg D., Weinberger H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Koch G., Nadirashvili N., Seregin G., Sverák V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, vol. 2. Gordon and Breach, Science Publishers, New York-London-Paris (1969)

  16. Málek J., Necǎs J., Rokyta M., Růžička M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

    Google Scholar 

  17. Naumann J.: On the differentiability of weak solutions of a degenerate system of PDEs in fluid mechanics. Ann. Mat. Pura Appl. (4) 151, 225–238 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wolf J.: Interior C 1,α-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(2), 317–340 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, G.: Liouville theorems for stationary flows of generalized Newtonian fluids. PhD thesis, Report 135, University of Jyväskylä, Department of Mathematics and Statistics, Jyväskylä (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fuchs.

Additional information

Communicated by H. Beirão da Veiga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bildhauer, M., Fuchs, M. & Zhang, G. Liouville-Type Theorems for Steady Flows of Degenerate Power Law Fluids in the Plane. J. Math. Fluid Mech. 15, 583–616 (2013). https://doi.org/10.1007/s00021-012-0122-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-012-0122-1

Mathematics Subject Classification

Keywords

Navigation