Journal of Mathematical Fluid Mechanics

, Volume 15, Issue 2, pp 249–271 | Cite as

Existence of Strong Solutions for a System Coupling the Navier–Stokes Equations and a Damped Wave Equation

Article

Abstract

We consider a fluid–structure interaction problem coupling the Navier–Stokes equations with a damped wave equation which describes the displacement of a part of the boundary of the fluid domain. The system is considered first in the two-dimensional setting and in a second part it is adapted to the three-dimensional setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, San Diego (1975)MATHGoogle Scholar
  2. 2.
    Bardos C.: A regularity theorem for parabolic equations. J. Funct. Anal. 7, 311–322 (1971)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beirão~da Veiga H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Chambolle A., Desjardins B., Esteban M.J., Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Cumsille P., Takahashi T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133(4), 961–992 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1992)Google Scholar
  8. 8.
    Lequeurre J.: Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lequeurre, J.: Quelques résultats d’existence, de contrôlabilité et de stabilisation pour des systèmes couplés fluide-structure. PhD thesis, Institut de Mathématiques de Toulouse (2011)Google Scholar
  10. 10.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. vol.1.Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968)Google Scholar
  11. 11.
    Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2, 163–197 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Raymond J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 125–169 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Raymond J.-P.: Feedback stabilization of a fluid–structure model. SIAM J. Control Optim. 48(8), 5398–5443 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Raymond J.-P.: Stokes and Navier–Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1537–1564 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Takahashi T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)MATHGoogle Scholar
  16. 16.
    Webb G.F.: Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canad. J. Math. 32(3), 631–643 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse (UMR 5219)Université Paul SabatierToulouse Cedex 9France

Personalised recommendations