Journal of Mathematical Fluid Mechanics

, Volume 15, Issue 2, pp 249–271 | Cite as

Existence of Strong Solutions for a System Coupling the Navier–Stokes Equations and a Damped Wave Equation



We consider a fluid–structure interaction problem coupling the Navier–Stokes equations with a damped wave equation which describes the displacement of a part of the boundary of the fluid domain. The system is considered first in the two-dimensional setting and in a second part it is adapted to the three-dimensional setting.


Initial Data Compatibility Condition Strong Solution Local Existence Sobolev Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, San Diego (1975)MATHGoogle Scholar
  2. 2.
    Bardos C.: A regularity theorem for parabolic equations. J. Funct. Anal. 7, 311–322 (1971)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beirão~da Veiga H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Chambolle A., Desjardins B., Esteban M.J., Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Cumsille P., Takahashi T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133(4), 961–992 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1992)Google Scholar
  8. 8.
    Lequeurre J.: Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lequeurre, J.: Quelques résultats d’existence, de contrôlabilité et de stabilisation pour des systèmes couplés fluide-structure. PhD thesis, Institut de Mathématiques de Toulouse (2011)Google Scholar
  10. 10.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. vol.1.Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968)Google Scholar
  11. 11.
    Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2, 163–197 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Raymond J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 125–169 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Raymond J.-P.: Feedback stabilization of a fluid–structure model. SIAM J. Control Optim. 48(8), 5398–5443 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Raymond J.-P.: Stokes and Navier–Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1537–1564 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Takahashi T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)MATHGoogle Scholar
  16. 16.
    Webb G.F.: Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canad. J. Math. 32(3), 631–643 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse (UMR 5219)Université Paul SabatierToulouse Cedex 9France

Personalised recommendations