Skip to main content
Log in

Mutual Attractions of Partially Immersed Parallel Plates

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We complete a study initiated in an earlier paper, on the horizontal attracting and repelling forces acting on two parallel semi-infinite plates, partly immersed in an infinite liquid bath and subject to capillary attractions in a uniform gravity field. We find a considerable range of behavior patterns, depending on the contact angles on the plate sides and on the plate separation, in ways that we did not anticipate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mariotte, E.: Œuvres: posthumous publication; Pierre Vander, Leyden (1717). See also: Ré édition. J. Peyroux, Bordeaux (2001)

  2. McCuan J.: A variational formula for floating bodies. Pac. J. Math. 231(1), 167–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Laplace, P.S.: Traité de mécanique céleste, Œuvres complète, vol. 4, Gauthier-Villars, Paris, 1805, Supplément 1, livre X, pp. 771–777. See also the annotated English translation by N. Bowditch 1839. Chelsea, New York (1966)

  4. Laplace, P.S.: Traité de mécanique céleste, Œuvres complète, vol. 4, Gauthier-Villars, Paris, 1806, Supplément 2, Livre X, pp. 909–945. See also the annotated English translation by N. Bowditch 1839. Chelsea, New York (1966)

  5. Finn R.: On Young’s Paradox, and the attractions of immersed parallel plates. Phys Fluids 22, 017103 (2010)

    Article  ADS  Google Scholar 

  6. von Segner, J.A.: Superficies fluidorum concavas ostendit. Comment. Soc. Reg. Göttingen 1(301), 1751

  7. Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  8. Lunati I.: Young’s law and the effects of interfacial energy on the pressure at the solid-fluid interface. Phys. Fluids 19, 118105 (2007)

    Article  ADS  Google Scholar 

  9. Shikhmurzaev Y.D.: On Young’s (1805) equation and Finn’s (2006) ‘counterexample’. Phys. Lett. A 372, 704–707 (2008)

    Article  ADS  MATH  Google Scholar 

  10. Finn R.: Comments related to my paper “The contact angle in capillarity”. Phys. Fluids 20, 107104 (2008)

    Article  ADS  Google Scholar 

  11. Finn, R., McCuan, J., Wente, H.C.: Thomas Young’s surface tension diagram: its history, legacy, and irreconcilabilities. J. Math. Fluid Mech. doi:10.1007/s00021-011-0079-5

  12. Finn R., Hwang J.-F.: On the comparison principle for capillary surfaces. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 36(1), 131–134 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Minkowski, H., Kapillarität. Enz. Mat. Wiss. Bd. 5-1, pp. 559–608. B.G. Teubner, Leipzig (1906)

  14. Finn, R.: Equilibrium Capillary Surfaces, Grundlehren Series 284. Springer, Berlin (1986)

  15. Finn, R.: Capillary surfaces. In: Françoise, J.-P., Naber, G.L., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics, pp. 431–445. Elsevier, Amsterdam (2006)

  16. Siegel D.: Height estimates for capillary surfaces. Pac. J. Math. 88, 471–516 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Finn.

Additional information

The former author dedicates his contribution in this work to the memory of Margaret Keidel, whose talents should have been better recognized.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finn, R., Lu, D. Mutual Attractions of Partially Immersed Parallel Plates. J. Math. Fluid Mech. 15, 273–301 (2013). https://doi.org/10.1007/s00021-012-0105-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-012-0105-2

Keywords

Navigation