Skip to main content
Log in

Incompressible 3D Navier–Stokes Equations as a Limit of a Nonlinear Parabolic System

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem for a nonlinear parabolic system \({u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}\) in \({\mathbb {R}^3 \times (0,\infty)}\) with initial data in Lebesgue spaces \({L^2(\mathbb {R}^3)}\) or \({L^3(\mathbb {R}^3)}\) . We analyze the convergence of its solutions to a solution of the incompressible Navier–Stokes system as \({\epsilon \to 0}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandolese L.: Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 192(3), 375–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderon C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in L p. Trans. Am. Math. Soc. 318(1), 179–200 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli L., Kohn R.V., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. XXXV, 771–831 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Dong H., Du D.: On the local smoothness of the Navier–Stokes equations. J. Math. Fluid Mech. 9, 139–152 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Gallagher I.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 53(5), 1387–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gresho P., Sani R.L.: Incompressible Flow and the Finite Element Method. Wiley, New York (2000)

    MATH  Google Scholar 

  7. Kukavica I.: On partial regularity for the Navier–Stokes equations. Discrit. Contin. Dyn. Syst. 21(3), 717–728 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ladyzhenskaya O.A., Seregin G.A.: On partial regularity of suitable weak solutions of the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lin F.-H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MATH  Google Scholar 

  10. Nečas J., Růžička M., Šverák V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Plecháč P., Šverák V.: Singular and regular solutions of a nonlinear parabolic system. Nonlinearity 16, 2083–2097 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Rusin W., Šverák V.: Minimal initial data for potential NavierStokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rusin, W.: On solutions to Navier–Stokes equations in critical spaces. PhD thesis, University of Minnesota (2010)

  14. Scheffer V.: Partial regularity of solutions to the Navier–Stokes equations. Pacif. J. Math. 66(2), 535–552 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Temam R.: Navier–Stokes equations. Theory and numerical analysis. 3rd edn. North-Holland Publishing Co, Amsterdam (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Rusin.

Additional information

Communicated by G.P. Galdi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusin, W. Incompressible 3D Navier–Stokes Equations as a Limit of a Nonlinear Parabolic System. J. Math. Fluid Mech. 14, 383–405 (2012). https://doi.org/10.1007/s00021-011-0074-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-011-0074-x

Mathematics Subject Classification (2010)

Keywords

Navigation