Skip to main content
Log in

Stationary Flows of Shear Thickening Fluids in 2D

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We investigate the steady flow of a shear thickening generalized Newtonian fluid under homogeneous boundary conditions on a domain in \({\mathbb{R}^{2}}\). We assume that the stress tensor is generated by a potential of the form \({H = h (|\varepsilon (u)|)}\), \({\varepsilon (u)}\) denoting the symmetric part of the velocity gradient. We prove the existence of strong solutions for a large class of functions h having the property that h′ (t)/t increases (shear thickening case).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Anzellotti G., Giaquinta M.: Existence of the displacement field for an elasto-plastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32, 101–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apushkinskaya D., Bildhauer M., Fuchs M.: Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7(2), 261–297 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Beirão da Veiga H.: On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions. Commun. Pure Appl. Math. 58, 552–577 (2005)

    Article  MATH  Google Scholar 

  5. Beirão da Veiga, H.: Navier–Stokes equations with shear thickening viscosity. Regularity up to the boundary. J. Math. Fluid Mech. (2008). doi:10.1007/s00021-008-0257-2

  6. Beirão da Veiga, H.: A note on the global integrability, for any finite power, of the full gradient for a class of power models, p < 2. In: Advances in Mathematical Fluid Mechanics, pp. 37–42. Springer, Berlin (2010)

  7. Beirãoda Veiga H., Kaplický P., Růžička M.: Regularity theorems, up to the boundary, for shear thickening fluids . Comp. Rend. Math. 348(9–10), 541–544 (2010)

    Google Scholar 

  8. Bildhauer M., Fuchs M.: Differentiability and higher integrability results for local minimizers of splitting type variational integrals in 2D with applications to nonlinear Hencky-materials. Calc. Var. 37(1–2), 167–186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bildhauer M., Fuchs M., Zhong X.: A lemma on the higher integrability of functions with applications to the regularity theory of two dimensional generalized Newtonian fluids. Manuscr. Math. 116(2), 135–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Breit, D., Fuchs, M.: The nonlinear Stokes problem with general potentials having superquadratic growth. J. Math. Fluid Mech. (2010). doi:10.1007/s00021-010-0023-0

  11. Byun S.-S., Yao F., Zhou S.: Gradient estimates in Orlicz space for nonlinear elliptic equations. J. Funct. Anal. 255, 1851–1873 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frehse J., Málek J., Steinhauer M.: On analysis of steady flows of fluids with shear dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fuchs M.: A note on non-uniformly elliptic Stokes-type systems in two variables. J. Math. Fluid Mech. 12, 266–279 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Fuchs M.: Korn inequalities in Orlicz spaces. Irish Math. Soc. Bull. 65, 5–9 (2010)

    MATH  Google Scholar 

  15. Galdi, G.: An introduction to the mathematical theory of the Navier-Stokes equations vol. I. Springer Tracts in Natural Philosophy vol. 38. Springer, Berlin (1994)

  16. Galdi, G.: An introduction to the mathematical theory of the Navier–Stokes equations vol. II. Springer Tracts in Natural Philosophy, vol. 39. Springer, Berlin (1994)

  17. Jia H., Li D., Wang L.: Regularity theory in Orlicz spaces for elliptic equations in Reifenberg domains. J. Math. Anal. Appl. 334, 804–817 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaplický P.: Regularity of flow of anisotropic fluid. J. Math. Fluid Mech. 10, 71–88 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kaplický P., Málek J., Stará J.: C 1,α -solutions to a class of nonlinear fluids in two dimensions—stationary Dirichlet problem. Zapiski Nauchnyh Seminarow POMI 259, 122–144 (1999)

    Google Scholar 

  20. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Gordon And Breach, New York (1969)

  21. Málek, J., Necǎs, J., Rokyta, M., Růžička, M.: Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)

  22. Mosolov P.P., Mjasnikov V.P.: On the correctness of boundary value problems in the mechanics of continuous media. Math. USSR Sbornik 17(2), 257–267 (1972)

    Article  Google Scholar 

  23. Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  24. Reshetnyak Y.G.: Estimates for certain differential operators with finite dimensional kernel. Sibirsk. Mat. Zh. 11, 414–428 (1970)

    Google Scholar 

  25. Wolf J.: Interior C 1, α-regularity of weak solutions to the equations of stationary motion to certain non-Newtonian fluids in two dimensions. Boll U.M.I.(8) 10B, 317–340 (2007)

    Google Scholar 

  26. Zhou, S.: Private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fuchs.

Additional information

Communicated by H. Beirao da Veiga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, M. Stationary Flows of Shear Thickening Fluids in 2D . J. Math. Fluid Mech. 14, 43–54 (2012). https://doi.org/10.1007/s00021-010-0044-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0044-8

Mathematics Subject Classification (2000)

Keywords

Navigation