Skip to main content

Non-Existence of Global Solutions For a Quasilinear Benney System

An Erratum to this article was published on 27 January 2010


Benney introduced in 1977 (cf. Stud Appl Math 56:81–94, 1977) a general strategy for deriving systems of nonlinear PDEs describing the interaction between long and short waves. In Dias et al. (CR Acad Sci Paris I 344:493–496, 2007) we have studied the local existence and unicity of solutions to a quasilinear version of these systems. In the present paper we prove that in some important cases global strong solutions do not exist.

This is a preview of subscription content, access via your institution.


  1. Benney D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977)

    MathSciNet  Google Scholar 

  2. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10. CIMS and AMS (2003)

  3. Djordjevic V.D., Redekopp L.G.: On two-dimensional packets of capillary–gravity waves. J. Fluid Mech. 79, 703–714 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  4. Champeaux S., Laveder D., Passot T., Sulem P.-L.: Remarks on the parallel propagation of small-amplitude dispersive Alfven waves. Nonlinear Process. Geophys. 6, 169–178 (1999)

    Article  ADS  Google Scholar 

  5. Dias J.P., Figueira M.: Existence of weak solutions for a quasilinear version of Benney equations. J. Hyperbolic Differ. Equ. 4, 555–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dias, J.P., Figueira, M., Frid, H.: Vanishing viscosity with short wave long wave interactions for systems of conservation laws, Arch. Ration. Mech. Anal. (to appear)

  7. Dias J.P., Figueira M., Oliveira F.: Existence of local strong solutions for a quasilinear Benney system. C.R. Acad. Sci. Paris I 344, 493–496 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dias F., Kharif C.: Nonlinear gravity and capillary–gravity waves. Annu. Rev. Fluid Mech. 31, 301–346 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Colin T., Lannes D.: Long-wave short-wave resonance for nonlinear geometric optics. Duke Math. J. 107, 351–419 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laurençot P.: On a nonlinear Schrödinger equation arising in the theory of water waves. Nonlinear Anal. TMA 4, 509–527 (1995)

    Article  Google Scholar 

  11. Ma Y.C.: The complete solution of the long-wave–short-wave resonance equations. Stud. Appl. Math. 59, 201–221 (1978)

    MathSciNet  Google Scholar 

  12. Schochet H., Weinstein M.I.: The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys. 106, 569–580 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Sulem C., Sulem P.-L.: The Nonlinear Schrödinger Equation. Appl. Math. Sci., vol. 139. Springer, New York (1999)

    Google Scholar 

  14. Tsutsumi M., Hatano S.: Well-posedness of the Cauchy problem for the long wave–short wave resonance equations. Nonlinear Anal. TMA 22, 155–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsutsumi M., Hatano S.: Well-Posedness of the Cauchy Problem for Benneys first equations of long wave short wave interactions. Funkcialaj Ekvacioj 37, 289–316 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Yajima N., Oikawa M.: Formation and interaction of sonic-Langmuir solitons. Prog. Theor. Phys. 56, 1719–1739 (1974)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Antontsev.

Additional information

Communicated by H. Beirao da Veiga

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antontsev, S., Dias, J.P., Figueira, M. et al. Non-Existence of Global Solutions For a Quasilinear Benney System. J. Math. Fluid Mech. 13, 213–222 (2011).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification (2000)