Skip to main content
Log in

Navier’s Slip Problem for Motion of Inhomogeneous Incompressible Fluid-like Bodies

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we are concerned with a flow of inhomogeneous incompressible fluid-like bodies (IIFB). The concept of IIFB is arised from the analysis of a certain type of granular flows. It is esssentially important to assign the so-called ‘slip’ boundary condition due to its behaviour at the surface, thus we take into account the Navier’s slip condition. Here, the theorem on the unique solvability, local in time, is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahmadi G.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 17, 21–33 (1982)

    Article  MATH  ADS  Google Scholar 

  3. Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integral Representations of Functions and Imbedding Theorems. “Nauka”, Moscow, 1975; English transl., vols. 1, 2. Wiley, NY (1979)

  4. Boyle E.J., Massoudi M.: A theory for granular materials exhibiting normal stress effects based on Enskog’s dense gas theory. Int. J. Eng. Sci. 28, 1261–1275 (1990)

    Article  MATH  Google Scholar 

  5. Bulíček M., Málek J., Rajagopal K.R.: Navier’s slip and evolutionary Navier–Stokes-like systems with pressure and shear-rate dependent viscosity. Ind. Univ. Math. J. 56, 51–85 (2007)

    Article  MATH  Google Scholar 

  6. Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goodman M.A., Cowin S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Itoh S., Tanaka N., Tani A.: The initial value problem for the Navier–Stokes equations with general slip boundary condition in Hölder space. J. Math. Fluid Mech. 5, 275–301 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  9. Itoh S., Tani A.: The initial value problem for the non-homogeneous Navier–Stokes equations with general slip boundary condition. Proc. R. Soc. Edinb. Sect. A 130, 827–835 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kortweg D.J.: Sur la forme que prenent les équations du mouvements des fluides si l’on tient compte des forces capilaires causées par des variations de densité considérables mains continues et sur la théorie de la capollarité dans l’hypothése d’une varation continue de la densité. Arch. Néerl. Sci. Exactes Nat. Ser. II 6, 1–24 (1901)

    Google Scholar 

  11. Ladyženskaja O.A., Solonnikov V.A., Ural’ceva N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Google Scholar 

  12. Málek, J., Rajagopal, K.R.: Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations. Handbook of Differential Equations: Evolutionary Equations, vol. II. pp. 371–459, North-Holland, Amsterdam, (2005)

  13. Málek J., Rajagopal K.R.: On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38, 233–242 (2006)

    Article  Google Scholar 

  14. Málek J., Rajagopal K.R.: Incompressible rate type fluids with pressure and shear-rate dependent material moduli. Nonlinear Anal. Real World Appl. 8, 156–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Navier C.L.M.H.: Mémoir sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6, 389–416 (1823)

    Google Scholar 

  16. Nakano, N., Tani, A.: Initial-boundary value problem for motion of incompressible inhomogeneous fluid-like bodies (submitted)

  17. Rajagopal, K.R.: Multiple Natural Configurations in Continuum Mechanics. Technical Report 6, Institute for Computational and Applied Mechanics, University of Pittsburgh (1995)

  18. Rajagopal K.R., Troy W.C., Massoudi M.: Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech. B/Fluids 11, 265–276 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Rajagopal, K.R., Massoudi, M.: A method for measuring material moduli of granular materials: flow in an orthogonal rheomer. Topical Report U.S. Department of Energy DOE/PETC/TR-90/3 (1990)

  20. Rajagopal K.R., Srinivasa A.R.: A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  21. Slobodetskiĭ L.N.: Estimates in L 2 for solutions of linear elliptic and parabolic systems. I. Estimates of solutions of an elliptic system. Ser. Mat. Mekh. Astr. 7, 28–47 (1960) (Russian)

    Google Scholar 

  22. Solonnikov, V.A.: A priori estimates for certain boundary value problems. Dokl. Akad. Nauk SSSR 138 (1961), 781–784; English transl. in Sov. Math. Dokl. 2 (1961)

  23. Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. Zap. Nauchn. Sem. LOMI 38, 153–231 (1973); English transl. in J. Sov. Math. 8 (1977)

    Google Scholar 

  24. Solonnikov V.A.: On general initial-boundary value problems for linear parabolic systems. Proc. Steklov Math. Inst. 83, 1–184 (1965)

    MathSciNet  Google Scholar 

  25. Solonnikov, V.A.: On an initial-boundary value problem for the Stokes system arising in the study of a problem with a free boundary. Trudy Mat. Inst. Steklov. 188, 150–188 (1990); English transl. in Proc. Steklov Inst. Math. 1991(3), 191–239 (1991)

  26. Solonnikov V.A.: Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval. St. Petersburg Math. J. 3, 189–220 (1992)

    MathSciNet  Google Scholar 

  27. Solonnikov, V.A., Tani, A.: Free Boundary Problem for a Viscous Compressible Flow with a Surface Tension. Carathéodory: An International Tribute. pp. 1270–1303. World Scientific, Singapore (1991)

  28. Tani A., Itoh S., Tanaka N.: The initial value problem for the Navier–Stokes equations with general slip boundary condtition. Adv. Math. Sci. Appl. 4, 51–69 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atusi Tani.

Additional information

Communicated by V.A. Solonnikov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, N., Tani, A. Navier’s Slip Problem for Motion of Inhomogeneous Incompressible Fluid-like Bodies. J. Math. Fluid Mech. 13, 65–87 (2011). https://doi.org/10.1007/s00021-009-0003-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-009-0003-4

Mathematics Subject Classification (2000)

Keywords

Navigation