Abstract
In this paper we introduce reproducing kernel Hilbert spaces of polyanalytic functions of infinite order. First we study in details the counterpart of the Fock space and related results in this framework. In this case the kernel function is given by \(\displaystyle e^{z\overline{w}+\overline{z}w}\) which can be connected to kernels of polyanalytic Fock spaces of finite order. Segal–Bargmann and Berezin type transforms are also considered in this setting. Then, we study the reproducing kernel Hilbert spaces of complex-valued functions with reproducing kernel \(\displaystyle \frac{1}{(1-z\overline{w})(1-\overline{z}w)}\) and \(\displaystyle \frac{1}{1-2\mathrm{Re}\, z\overline{w}}\). The corresponding backward shift operators are introduced and investigated.
This is a preview of subscription content, access via your institution.
Data Availability Statement
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal. 29, 287–302 (2010)
Abreu, L.D.: Super-wavelets versus poly-Bergman spaces. Int. Equ. Oper. Theory 73, 177–193 (2012)
Abreu, L.D., Balazs, P., De Gosson, M., Mouayn, Z.: Discrete coherent states for higher Landau levels. Ann. Phys. 363, 337–353 (2015)
Abreu, L.D., Feichtinger, H.G.: Function Spaces of Polyanalytic Functions. Harmonic and Complex Analysis and its Applications, Trends Math., pp. 1–38. Birkhäuser Springer, Cham (2014)
Agler, J.: Nevanlinna–Pick Interpolation on Sobolev Space, Proceedings of the American Mathematica Society. 108(2) (1990)
Agler, J.: On the representation of certain holomorphic functions on a polydisc. Oper. Theory: Adv. Appl. 48, 47–66 (1990)
Agranovsky, M.L.: Characterization of polyanalytic functions by meromorphic extensions into chains of circles. J. d’Analyse Math. 113, 305–329 (2011)
Alpay, D.: An Advanced Complex Analysis Problem Book. Topological Vector Spaces, Functional Analysis, and Hilbert Spaces of Analytic Functions. Birkhäuser, Basel (2015)
Alpay, D., Bolotnikov, V., Dijksma, A., Sadosky, C.: Hilbert spaces contractively included in the Hardy space of the bidisk. Positivity 5(1), 25–50 (2001)
Alpay, D., Cerejeiras, P., Kaehler, U., Kling, T.: Commutators on Fock spaces. Preprint (2021) arXiv:2208.03394
Alpay, D., Kaptanoglu, T.: Some finite-dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem. Integral Equ. Oper. Theory 42(1), 1–21 (2002)
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants. Comptes Rendus de l’Acad. des Sci.-Ser. I-Math. 325(7), 707–712 (1997)
Balk, M.B.: Polyanalytic Functions. Akademie-Verlag, Berlin (1991)
Balk, M.B.: Polyanalytic Functions and their Generalizations, in Complex Analysis, I, 195–253, Encyclopaedia Math. Sci., 85, Springer, Berlin (1997)
Ball, J.A., Bolotnikov, V.: Canonical Transfer-Function Realization for Schur–Agler-Class Functions on Domains with Matrix Polynomial Defining Function in \({\mathbb{C}}^n\). Recent Progress in Operator Theory and Its Applications, 23–55, Operator Theory Advanced Application, 220, Birkhäuser/Springer Basel AG, Basel (2012)
Ball, J.A., Kaliuzhnyi-Verbovetskyi, D.S.: Schur–Agler and Herglotz–Agler classes of functions: positive-kernel decompositions and transfer-function realizations. Adv. Math. 280, 121–187 (2015)
Ball, J.A., Trent, T.: Unitary colligations, reproducing kernel Hilbert spaces and Nevanlinna–Pick interpolation in several variables. J. Funct. Anal. 157, 1–61 (1998)
Bargman, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)
Begehr, H.: Orthogonal decompositions of the function space \(L_2(\overline{D};\mathbb{C})\). J. Reine Angew. Math. 549, 191–219 (2002)
Benahmadi, A., Ghanmi, A.: Non-trivial 1d and 2d Segal–Bargmann transforms. Integral Transforms Spec. Funct. 30(7), 547–563 (2019)
Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)
de Branges, L.: Some Hilbert spaces of analytic functions I. Trans. Am. Math. Soc. 106, 445–468 (1963)
de Branges, L.: Espaces Hilbertiens de fonctions entières. Masson, Paris (1972)
Ismail, M.E.H., Simeonov, P.: Complex Hermite polynomials: their combinatorics and integral operators. Proc. Am. Math. Soc. 143, 1397–1410 (2014)
Fricain, E., Mashreghi, J.: The Theory of \(\cal{H}\)(\(b\)) Spaces. Vol. 1, vol. 20 of New Mathematical Monographs. Cambridge University Press, Cambridge (2016)
Fricain, E., Mashreghi, J.: The Theory of \(\cal{H}(b)\) Spaces. Vol. 2, volume 21 of New Mathematical Monographs. Cambridge University Press, Cambridge (2016)
Ito, K.: Complex multiple Wiener integral. Jpn. J. Math. 22, 63–86 (1952)
Kolossov, G.V.: Sur les problèmes d’lasticité à deux dimensions. C. R. Acad. Sci. 146, 522–525 (1908)
Lebedev, N.N.: Special Functions and Their Applications. Physico-Technical Institute, Academy of Sciences, U.S.S.R (1972)
Mouayn, Z.: Coherent state transforms attached to generalized Bargmann spaces on the complex plane. Math. Nachr. 284(14–15), 1948–1954 (2011)
Quiggin, P.: For which reproducing kernel Hilbert spaces is Pick’s theorem true?. Integral Equation and Operator Theory, 16 (1993)
Saitoh, S.: Theory of Reproducing Kernels and Its Applications, vo. 189. Longman Scientific and Technical (1988)
Shigekawa, I.: Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold. J. Funct. Anal. 75, 92–127 (1987)
Vasilevski, N.L.: On the structure of Bergman and poly-Bergman spaces. Integr. Equ. Oper. Theory 33, 471–488 (1999)
Vasilevski, N.L.: Poly-Fock spaces. In: Differential Operators and Related Topics (pp. 371–386). Birkhäuser, Basel (2000)
Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012)
Zhu, K.: Singular integral operators on the Fock space. Integral Equ. Oper. Theory 81(4), 451–454 (2015)
Acknowledgements
Daniel Alpay thanks the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research. Kamal Diki thanks the Grand Challenges Initiative (GCI) at Chapman University for supporting this research. The authors are grateful to the referee for suggestions considered in Remark 5.17 leading to the equivalence Landau levels operator.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Alpay, D., Colombo, F., Diki, K. et al. Reproducing Kernel Hilbert Spaces of Polyanalytic Functions of Infinite Order. Integr. Equ. Oper. Theory 94, 35 (2022). https://doi.org/10.1007/s00020-022-02713-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00020-022-02713-4
Keywords
- Polyanalytic Fock space of infinite order
- Polyanalytic Hardy space of infinite order
- Backward shift operators
- Segal–Bargmann transform
- Berezin transform
Mathematics Subject Classification
- 30H20
- 44A15
- 64E22