Skip to main content
Log in

Power Set of Some Quasinilpotent Weighted Shifts

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

For a quasinilpotent bounded linear operator T, we write \(k_x=\limsup \limits _{z\rightarrow 0}\frac{\log \Vert (z-T)^{-1}x\Vert }{\log \Vert (z-T)^{-1}\Vert }\) for each nonzero vector x. Set \(\Lambda (T)=\{k_x:x\ne 0\}\), and call it the power set \(\Lambda (T)\) of T. This notation was introduced by Douglas and Yang (see Hermitian geometry on resolvent set. arXiv:1608.05990, 2016; Oper Theory Adv Appl 267, Springer, Cham, 2018; Sci Cina Math. https://doi.org/10.1007/s11425-000-0000-0). They showed that for \(\tau \in \Lambda (T)\), \(M_\tau :=\{0, x:k_x\le \tau \}\) is a linear subspace invariant under each A commuting with T; hence, if there are two different points \(\tau _j\in \Lambda (T)\) such that \(M_{\tau _j}\)’s are closed, then T has a nontrivial hyperinvariant subspace. In this paper, we show that if a quasinilpotent unilateral weighted shift T is strongly strictly cyclic, then \(\Lambda (T)=\{1\}\). Moreover, we construct a quasinilpotent operator T such that \(\Lambda (T)=[0, 1]\) and \(M_\tau \) is not closed for all \(\tau \) in [0, 1). Even so, we still find a subset \({\mathcal {N}}\) of \({\text {Lat}}T\), the lattice of invariant subspaces of T, such that \({\mathcal {N}}\) is order isomorphic to \(\Lambda (T)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douglas R.G., Yang R.; Hermitian geometry on resolvent set. arXiv:1608.05990 (2016)

  2. Douglas R. G., Yang R.: Hermitian geometry on resolvent set. Operator theory, operator algebras, and matrix theory, 167–183, Oper. Theory Adv. Appl., 267, Birkh\(\ddot{\rm a}\)user/Springer, Cham (2018)

  3. Douglas R.G., Yang R.; Hermitian geometry on resolvent set (II). SCIENCE CHINA, Mathematics. https://doi.org/10.1007/s11425-000-0000-0)

  4. Dixmier, J.: Les op\(\acute{e}\)rateurs permutables \(\acute{a}\) l’op\(\acute{e}\)rateur integral. Portugal. Math. 8(1), 73–84 (1949)

    Google Scholar 

  5. Radjavi, H., Rosenthal, P.: Invariant Subspaces. Springer, New York (1973)

    Book  Google Scholar 

  6. Sarason D.; Invariant subspaces, Topics in operator theory, pp. 1–47. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I. (1974)

  7. Davidson K. R.; Nest algebras, pitman research notes in mathematics series, vol. 191, Longman Scientific & Technical, Harlow, Triangular forms for operator algebras on Hilbert space (1988)

  8. Liang, Y., Yang, R.: Quasinilpotent operators and non-Euclidean metrics. J. Math. Anal. Appl. 468, 939–958 (2018)

    Article  MathSciNet  Google Scholar 

  9. Shields A. L.: Weighted shift operators and analytic function theory. Topics in operator theory, pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, RI (1974)

  10. Rosenthal, E.: A Jordan form for certain infinite-dimensional operators. Acta Sci. Math. (Szeged) 41(3–4), 365–374 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Rosenthal, E.: Characterization of the invariant subspaces of direct sums of strictly cyclic algebras. Proc. Amer. Math. Soc. 94(4), 614–628 (1985)

    Article  MathSciNet  Google Scholar 

  12. Froelich, J.: Strictly cyclic operator algebras. Trans. Am. Math. Soc. 325(1), 73–86 (1991)

    Article  MathSciNet  Google Scholar 

  13. Hedlund, J.H.: Strongly strictly cyclic weighted shifts. Proc. Am. Math. Soc. 57, 119–121 (1976)

    Article  MathSciNet  Google Scholar 

  14. Thomas, M.P.: Quasinilpotent strictly cyclic unilateral weighted shift operators on \(l^p\) which are not unicellular. Proc. London Math. Soc. 51(3), 127–145 (1985)

    Article  MathSciNet  Google Scholar 

  15. J\(\acute{{\rm o}}\)dar, L.: On strictly cyclic operator algebras. Stochastica 9, 87-90 (1985)

  16. Grabiner S., Thomas M. P.: A class of unicellular shifts which contains nonstrictly cyclic shifts, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), 273-276. Lecture Notes in Math., 975, Springer, Berlin-New York (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Qing Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NNSF of China (12031002, and 11531003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y.Q., Liu, L. Power Set of Some Quasinilpotent Weighted Shifts. Integr. Equ. Oper. Theory 93, 25 (2021). https://doi.org/10.1007/s00020-021-02633-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02633-9

Keywords

Mathematics Subject Classification

Navigation