Skip to main content
Log in

How Small Can a Sum of Idempotents Be?

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The issue discussed in this paper is: how small can a sum of idempotents be? Here smallness is understood in terms of nilpotency or quasinilpotency. Thus the question is: given idempotents \(p_1,\ldots ,p_n\) in a complex algebra or Banach algebra, is it possible that their sum \(p_1+\cdots +p_n\) is quasinilpotent or (even) nilpotent (of a certain order)? The motivation for considering this problem comes from earlier work by the authors on the generalization of the logarithmic residue theorem from complex function theory to higher (possibly infinite) dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amitsur, S.A., Levitzky, J.: Minimal identities for algebras. Proc. Am. Math. Soc. 1, 449–463 (1950)

    Article  MathSciNet  Google Scholar 

  2. Bart, H.: Spectral properties of locally holomorphic vector-valued functions. Pac. J. Math. 52, 321–329 (1974)

    Article  MathSciNet  Google Scholar 

  3. Bart, H., Ehrhardt, T., Silbermann, B.: Zero sums of idempotents in Banach algebras. Integral Equ. Oper. Theory 19, 125–134 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues in Banach algebras. Integral Equ. Oper. Theory 19, 135–152 (1994)

    Article  MathSciNet  Google Scholar 

  5. Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in matrix algebras. In: Operator Theory and Analysis. Operator Theory: Advances and Applications, vol. 122, pp. 139–168. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  6. Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues of Fredholm operator valued functions and sums of finite rank projections. In: Linear Operators and Matrices. Operator Theory: Advances and Applications, vol. 130, pp. 83–106. Birkhäuser Verlag, Basel (2002)

    Chapter  Google Scholar 

  7. Bart, H., Ehrhardt, T., Silbermann, B.: Spectral regularity of Banach algebras and non-commutative Gelfand theory. In: A Panorama of Modern Operator Theory and Related Topics. Operator Theory: Advances and Applications, vol. 218, pp. 123–153. Birkhäuser/Springer Basel AG, Basel (2012)

    Chapter  Google Scholar 

  8. Bart, H., Ehrhardt, T., Silbermann, B.: Families of homomorphisms in non-commutative Gelfand theory: comparisons and examples. In: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations. Operator Theory: Advances and Applications, vol. 221, pp. 131–159. Birkhäuser/Springer Basel AG, Basel (2012)

    Chapter  Google Scholar 

  9. Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues, Rouché’s Theorem, and spectral regularity: the \(C^*\)-algebra case. Indag. Math. (N.S.) 23(4), 816–847 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bart, H., Ehrhardt, T., Silbermann, B.: Zero sums of idempotents and Banach algebras failing to be spectrally regular. In: Advances in Structured Operator Theory and Related Areas. Operator Theory: Advances and Applications, vol. 237, pp. 41–78. Birkhäuser/Springer, Basel (2013)

    Chapter  Google Scholar 

  11. Bart, H., Ehrhardt, T., Silbermann, B.: Approximately finite-dimensional Banach algebras are spectrally regular. Linear Algebra Appl. 470, 185–199 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in zero pattern matrix algebras. Linear Algebra Appl. 498, 262–316 (2016)

    Article  MathSciNet  Google Scholar 

  13. Böttcher, A., Gohberg, I., Karlovich, Yu., Krupnik, N., Roch, S., Silbermann, B., Spitkovsky, I.: Banach algebras generated by \(N\) idempotents and applications. In: Singular Integral Operators and Related Topics. Operator Theory Advances and Applications, vol. 90, pp. 19–54. Birkhäuser Verlag, Basel (1996)

    Chapter  Google Scholar 

  14. Cuntz, J.: Simple \(C^*\)-algebras generated by isometries. Commun. Math. Phys. 57, 173–185 (1977)

    Article  MathSciNet  Google Scholar 

  15. Ehrhardt, T., Rabanovich, V., Samoĭlenko, Yu., Silbermann, B.: On the decomposition of the identity into a sum of idempotents. Methods Funct. Anal. Topol. 7, 1–6 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Hartwig, R.E., Putcha, M.S.: When is a matrix a sum of idempotents? Linear Multilinear Algebra 26, 279–286 (1990)

    Article  MathSciNet  Google Scholar 

  17. Krupnik, N.Ya.: Banach algebras with symbol and singular integral operators. Translated from the Russian by A. Iacob. In: Operator Theory: Advances and Applications, vol. 26. Birkhäuser Verlag, Basel (1987)

    Google Scholar 

  18. Pearcy, C., Topping, D.: Sums of small numbers of idempotents. Michigan Math. J. 14, 453–465 (1967)

    Article  MathSciNet  Google Scholar 

  19. Roch, S., Santos, P.A., Silbermann, B.: Non-commutative Gelfand Theories, Universitext. Springer, London (2011)

    Book  Google Scholar 

  20. Roch, S., Silbermann, B.: Algebras generated by idempotents and the symbol calculus for singular integral operators. Integral Equ. Oper. Theory 11, 385–419 (1988)

    Article  MathSciNet  Google Scholar 

  21. Wu, P.Y.: Sums of idempotent matrices. Linear Algebra Appl. 142, 43–54 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author (T.E.) was supported by the Simons Foundation Collaboration Grant # 525111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Ehrhardt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bart, H., Ehrhardt, T. & Silbermann, B. How Small Can a Sum of Idempotents Be?. Integr. Equ. Oper. Theory 92, 10 (2020). https://doi.org/10.1007/s00020-020-2566-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-020-2566-7

Keywords

Mathematics Subject Classification

Navigation