Invariant Subspaces for Certain Tuples of Operators with Applications to Reproducing Kernel Correspondences


The techniques developed by Popescu, Muhly-Solel and Good for the study of algebras generated by weighted shifts are applied to generalize results of Sarkar and of Bhattacharjee-Eschmeier-Keshari-Sarkar concerning dilations and invariant subspaces for commuting tuples of operators. In that paper the authors prove Beurling-Lax-Halmos type results for commuting tuples \(T=(T_1,\ldots ,T_d)\) of operators that are contractive and pure; that is \(\Phi _T(I)\le I\) and \(\Phi _T^n(I)\searrow 0\) where

$$\begin{aligned} \Phi _T(a)=\Sigma _i T_iaT_i^*. \end{aligned}$$

Here we generalize some of their results to commuting tuples T satisfying similar conditions but for

$$\begin{aligned} \Phi _T(a)=\Sigma _{\alpha \in {\mathbb {F}}^+_d} x_{|\alpha |}T_{\alpha }aT_{\alpha }^* \end{aligned}$$

where \(\{x_k\}\) is a sequence of non negative numbers satisfying some natural conditions (where \(T_{\alpha }=T_{\alpha (1)}\cdots T_{\alpha (k)}\) for \(k=|\alpha |\)). In fact, we deal with a more general situation where each \(x_k\) is replaced by a \(d^k\times d^k\) matrix. We also apply these results to subspaces of certain reproducing kernel correspondences \(E_K\) (associated with maps-valued kernels K) that are invariant under the multipliers given by the coordinate functions.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ball, J., Bolotnikov, V.: A Beurling type theorm in weighted Bergman spaces. C. R. Math. Acad. Sci. Paris 351, 433–436 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ball, J., Bolotnikov, V.: Weighted Bergman spaces: shift-invariant spaces and input/state/output linear systems. Int. Eq. Oper. Theory 76, 301–356 (2013)

    Article  Google Scholar 

  3. 3.

    Bhattacharjee, M., Eschmeier, J., Keshari, D.K., Sarkar, J.: Dilations, wandering subspaces and inner functions. LAAA. Linear Algebra Appl. 523, 263–280 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Clouâtre, R., Hartz, M., Schillo, D.: A Beurling-Lax-Halmos theorem for spaces with a complete Nevanlinna-Pick factor. Proc. Am. Math. Soc. 148, 731–740 (2020)

    Article  Google Scholar 

  5. 5.

    Good, J.: Weighted Interpolation in \(W^*\)-algebras. Ph.D. Thesis, University of Iowa (2015)

  6. 6.

    McCullough, S., Trent, T.: Invariant subspaces and Nevanlinna-Pick kernels. J. Funct. Anal. 178, 226–249 (2000)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Meyer, J.: Noncommutative Hardy algebras, multipliers and quotients. Ph.D. Thesis, University of Iowa (2010)

  8. 8.

    Muhly, P., Solel, B.: Hardy algebras, \(W^*\)-correspondences and interpolation theory. Math. Ann. 330(2), 353–415 (2004)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Muhly, P., Solel, B.: Matricial function theory and weighted shifts. Int. Eq. Op. Theory 84, 501–553 (2016)

    Article  Google Scholar 

  10. 10.

    Muhly, P., Solel, B.: The Poisson kernel for Hardy algebras. Complex Anal. Anall. Oper. Theory 3, 221–242 (2009)

    Article  Google Scholar 

  11. 11.

    Popescu, G.: Poisson transforms on some \(C^*\)-algebras generated by isometries. J. Funct. Anal. 161, 27–61 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Popescu, G.: Operator theory on noncommutative domains. Mem. Am. Math. Soc. 205(964), 124 (2010)

    MATH  Google Scholar 

  13. 13.

    Paulsen, V., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  14. 14.

    Radjavi, H., Rosenthal, P.: Invariant Subspaces. Springer, New York (1973)

    Google Scholar 

  15. 15.

    Sarkar, J.: An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces. I J. Oper. Theory 73, 433–441 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Sarkar, J.: An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces II. Complex Anal. Oper. Theory 10, 769–782 (2016)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Baruch Solel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solel, B. Invariant Subspaces for Certain Tuples of Operators with Applications to Reproducing Kernel Correspondences. Integr. Equ. Oper. Theory 92, 38 (2020).

Download citation


  • Invariant subspace
  • Beurling Lax Halmos theorem
  • Commuting tuple of operators
  • Kernel
  • Correspondence
  • Reproducing kernel

Mathematics Subject Classification

  • 30H05
  • 46E22
  • 46L08
  • 47A13
  • 47A15
  • 47A20
  • 47B32
  • 47B38