Functional Models of Operators and Their Multivalued Extensions in Hilbert Space


This paper presents the first part of a study of functional models of selfadjoint and nonselfadjoint extensions \(\widetilde{A}\) of symmetric and nonsymmetric operators A in a Hilbert space \(\mathfrak {H}\). The extensions will be considered in the framework of linear relations (which may also be interpreted as the graphs of multivalued operators) that are required to have a nonempty set of regular points \(\rho (\widetilde{A})\). In these models \(\mathfrak {H}\) is modelled by a reproducing kernel Hilbert space \(\mathcal {H}\) of vector valued holomorphic functions that are defined on some nonempty open set \(\Omega \subseteq \rho (\widetilde{A})\) and \(\mathcal {H}\) is invariant under the action of the (generalized) backward shift operator \(R_\alpha \) for every \(\alpha \in \Omega \); A is modelled by the operator \(\mathfrak {A}\) of multiplication by the independent variable [i.e., \((\mathfrak {A}f)(\lambda )=\lambda f(\lambda )\) for \(f\in \mathcal {H}\) for which \(\mathfrak {A}f\in \mathcal {H}\)]; and \(\widetilde{A}\) is modelled by a linear relation \(\widetilde{\mathfrak {A}}\) with the property that \((\widetilde{\mathfrak {A}}-\alpha I)^{-1}=R_\alpha \) for all points \(\alpha \in \Omega \).

This is a preview of subscription content, log in to check access.


  1. 1.

    Adamjan, V.M., Arov, D.Z.: Unitary couplings of semi-unitary operators. (Russian) Mat. Issled 1(2), 3–64 (1966)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Frederick Ungar, New York (1961)

    Google Scholar 

  3. 3.

    Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Arov, D.Z., Dym, H.: \(J\)-Contractive Matrix Valued Functions and Related Topics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  5. 5.

    Arov, D.Z., Dym, H.: Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  6. 6.

    Arov, D.Z., Dym, H.: Multivariate Prediction, de Branges Spaces, and Related Extension and Inverse Problems. Birkhauser, Basel (2018)

    Google Scholar 

  7. 7.

    Arov, D.Z., Staffans, O.: Linear State/Signal Systems and their Input/State/Output Representations.

  8. 8.

    Behrndt, J., Hassi, S., de Snoo, H.: Boundary Value Problems, Weyl Functions, and Differential Operators. Birkhäuser/Springer, Cham (2020)

    Google Scholar 

  9. 9.

    Brodskii, M.S.: Triangular and Jordan representations of linear operators, Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 32, American Mathematical Society, Providence, RI (1971)

  10. 10.

    Cross, R.: Multivalued Linear Operators. Marcel Decker, New York (1998)

    Google Scholar 

  11. 11.

    Derkach, V., Dym, H.: Rigged de Branges–Pontryagin spaces and their application to extensions and embedding. J. Funct. Anal. 246, 1–80 (2019)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dijksma, A., de Snoo, H.S.V.: Self-adjoint extensions of symmetric subspaces. Pac. J. Math. 54, 71–100 (1974)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Dym, H.: \(J\)-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. In: CBMS Regional Conference Series in Mathematics, vol. 71. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1989)

  14. 14.

    Dym, H.: Linear Algebra in Action. Graduate Studies in Mathematics, vol. 78, 2nd edn. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  15. 15.

    Dym, H., Sartar, S.: Multiplication operators with deficiency indices \((p, p)\) and sampling formulas in reproducing kernel Hilbert spaces of entire vector valued functions. J. Funct. Anal. 273, 3671–3718 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Gorbachuk, M.L., Gorbachuk, V.I.: M. G. Krein’s Lectures on Entire Operators. Operator Theory Advances and Applications, vol. 97. Birkhäuser, Basel (1997)

    Google Scholar 

  17. 17.

    Krein, M.G.: On Hermitian operators with deficiency indices one, I, II, C. R. (Dokl.) Acad. Sci. URSS, 43 (1944), 323–326; ibid 44 (1944), 131–134

  18. 18.

    Krein, M.G.: Fundamental aspects of the representation theory of Hermitian operators with deficiency indices \((m,m)\), Ukranian Mat. Z., 1 (1949); English transl.: Amer. Math. Soc. Transl., (2), Vol. 97 (1970), 75–143

  19. 19.

    Krein, M.G., Langer, H.: The defect subspaces and generalized resolvents of a Hermitian operator in the space \(\Pi _\kappa \), (Russian) Funkcional. Anal. i Priložen 5(2), 59–71 (1971)

    MathSciNet  Google Scholar 

  20. 20.

    Krein, M.G., Langer, H.: The defect subspaces and generalized resolvents of a Hermitian operator in the space \(\Pi _\kappa \). (Russian) Funkcional. Anal. i Priložen 5(3), 54–69 (1971)

    MathSciNet  Google Scholar 

  21. 21.

    Krein, M.G., Saakjan, S.N.: Certain new results in the theory of resolvents of Hermitian operators. (Russian) Dokl. Akad. Nauk SSSR 169, 1269–1272 (1966)

    MathSciNet  Google Scholar 

  22. 22.

    Krein, M.G., Saakjan, S.N.: The resolvent matrix of a Hermitian operator and the characteristic functions connected with it. (Russian) Funkcional. Anal. i Priložen 4(3), 103–104 (1970)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Langer, H., Textorius, B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pac. J. Math. 72(1), 13–165 (1977)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Lax, S., Phillips, R.S.: Scattering Theory. Academic Press, New York (1967)

    Google Scholar 

  25. 25.

    Livsic, M.S.: On the spectral decompostion of linear nonselfadjoint operators, Mat. Sbornik N.S., 34 (1954), 145–199; English transl.: Amer. Math. Soc. Transl., (2) 5 (1957), 67–114

  26. 26.

    Nagy, B.S., Foias, C.: Harmonic analysis of operators on Hilbert space, Translated from the French and revised North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest (1970)

  27. 27.

    Rosenblum, M., Rovnyak, J.: Hardy Classes and Operator Theory, Corrected reprint of the 1985 Original. Dover Publications Inc, Mineola, NY (1997)

    Google Scholar 

  28. 28.

    Saakjan, S.N.: Theory of resolvents of a symmetric operator with infinite defect numbers, (Russian) Akad. Nauk Armjan, SSR Dokl. 41, 193–198 (1965)

    MathSciNet  Google Scholar 

  29. 29.

    Schwartz, L.: Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), (French). J. Analyse Math. 13, 115–256 (1964)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Strauss, A.: Functional models of linear operators, In: Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997), 469–484, Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, (2001)

  31. 31.

    Weitsma, H.L.: Multi-valued operators/linear relations between Krein spaces. In: Alpay, D. (ed.) Operator Theory, pp. 151–63. Springer, Basel (2015)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Harry Dym.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Arov acknowledges with thanks the support of a Belkin visiting Professorship from the Weizmann Institute of Science.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arov, D.Z., Dym, H. Functional Models of Operators and Their Multivalued Extensions in Hilbert Space. Integr. Equ. Oper. Theory 92, 39 (2020).

Download citation


  • Linear relations
  • Extensions of operators in Hilbert space
  • Functional models
  • Reproducing kernel Hilbert spaces
  • Vector valued de Branges spaces
  • Multiplication operators

Mathematics Subject Classification

  • 46E22
  • 47A20
  • 47A06
  • 47B25
  • 47B32