Representing Kernels of Perturbations of Toeplitz Operators by Backward Shift-Invariant Subspaces


It is well known the kernel of a Toeplitz operator is nearly invariant under the backward shift \(S^*\). This paper shows that kernels of finite rank perturbations of Toeplitz operators are nearly \(S^*\)-invariant with finite defect. This enables us to apply a recent theorem by Chalendar–Gallardo–Partington to represent the kernel in terms of backward shift-invariant subspaces, which we identify in several important cases.

This is a preview of subscription content, log in to check access.


  1. 1.

    Barclay, S.: A solution to the Douglas–Rudin problem for matrix-valued functions. Proc. Lond. Math. Soc. 99(3), 757–786 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Bourgain, J.: A problem of Douglas and Rudin on factorization. Pac. J. Math. 121, 47–50 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Brown, A., Halmos, P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213, 89–102 (1964)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Câmara, M.C., Malheiro, M.T., Partington, J.R.: Model spaces and Toeplitz kernels in reflexive Hardy spaces. Oper. Matrices 10(1), 127–148 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Câmara, M.C., Partington, J.R.: Near invariance and kernels of Toeplitz operators. J. d’Analyse Math. 124, 235–260 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Câmara, M.C., Partington, J.R.: Finite-dimensional Toeplitz kernels and nearly-invariant subspaces. J. Oper. Theory 75(1), 75–90 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Câmara, M.C., Partington, J.R.: Toeplitz kernels and model spaces. In: Böttcher, A., Potts, D., Stollmann, P., Wenzel, D. (eds.) The Diversity and Beauty of Applied. Operator Theory Operator Theory: Advances and Applications, vol. 268, pp. 139–153. Birkhäuser, Boston (2018)

    Google Scholar 

  8. 8.

    Chalendar, I., Gallardo-Gutiérrez, E.A., Partington, J.R.: A Beurling theorem for almost-invariant subspaces of the shift operator. J. Oper. Theory 83, 321–331 (2020)

    MathSciNet  Google Scholar 

  9. 9.

    Chalendar, I., Gorkin, P., Partington, J.R.: Inner functions and operator theory. North West. Eur. J. Math. 1, 7–22 (2015)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Garcia, S., Mashreghi, J., Ross, W.T.: Introduction to Model Spaces and Their Operators. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  11. 11.

    Hayashi, E.: The kernel of a Toeplitz operator. Integral Equ. Oper. Theory 9(4), 588–591 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Hitt, D.: Invariant subspaces of \({{\cal{H}}}^2\) of an annulus. Pac. J. Math. 134(1), 101–120 (1988)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Sarason, D.: Nearly invariant subspaces of the backward shift. In: Gohberg, I., Helton, J.W., Rodman, L. (eds.) Contributions to Operator Theory and Its Applications. Operator Theory: Advances and Applications, vol. 35, pp. 481–493. Birkhäuser, Basel (1988)

    Google Scholar 

  14. 14.

    Sarason, D.: Kernels of Toeplitz operators. Oper. Theory Adv. Appl. 71, 153–164 (1994)

    MathSciNet  MATH  Google Scholar 

Download references


The authors thank the referee for many useful comments which improve the presentation considerably. This work was done while the first author was visiting the University of Leeds. She is grateful to the School of Mathematics at the University of Leeds for its hospitality.

Author information



Corresponding author

Correspondence to Yuxia Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuxia Liang is supported by the National Natural Science Foundation of China (Grant No. 11701422).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Partington, J.R. Representing Kernels of Perturbations of Toeplitz Operators by Backward Shift-Invariant Subspaces. Integr. Equ. Oper. Theory 92, 35 (2020).

Download citation


  • Shift-invariant subspace
  • Nearly \(S^*\)-invariant
  • Toeplitz operator

Mathematics Subject Classification

  • Primary 46E22
  • 47B38
  • Secondary 47A15