Abstract
This paper concerns a commutant lifting theorem and a Nevanlinna–Pick type interpolation result in the setting of multipliers from vector-valued Drury–Arveson space to a large class of vector-valued reproducing kernel Hilbert spaces over the unit ball in \({\mathbb {C}}^n\). The special case of reproducing kernel Hilbert spaces includes all natural examples of Hilbert spaces like Hardy space, Bergman space and weighted Bergman spaces over the unit ball.
This is a preview of subscription content, access via your institution.
References
Agler, J., McCarthy, J.: Pick Interpolation and Hilbert Function Spaces. AMS, Providence (2002)
Aleman, A., Hartz, M., McCarthy, J., Richter, S.: Interpolating sequences in spaces with the complete Pick property. Int. Math. Res. Not. IMRN 2019, 3832–3854 (2019)
Ambrozie, C., Timotin, D.: On an intertwining lifting theorem for certain reproducing kernel Hilbert spaces. Integral Equ. Oper. Theory 42, 373–384 (2002)
Arveson, W.: Subalgebras of \(C^*\)-algebras. III. Multivariable operator theory. Acta Math. 181, 159–228 (1998)
Ball, J., Bolotnikov, V.: Contractive multipliers from Hardy space to weighted Hardy space. Proc. Am. Math. Soc. 145, 2411–2425 (2017)
Ball, J., Bolotnikov, V.: Interpolation in the noncommutative Schur-Agler class. J. Oper. Theory 58, 83–126 (2007)
Ball, J., Trent, T., Vinnikov, V.: Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces. In: Bart, H., Gohberg, I., Ran, A. (eds.) Operator Theory and Analysis, Operator Theory: Advances and Applications, vol. 122, pp. 89–138. Birkhäuser, Basel (2001)
Bhattacharjee, M., Das, B.K., Sarkar, J.: Hypercontractions and factorizations of multipliers in one and several variables (2018). arXiv:1812.08143v2
Clouâtre, R., Hartz, M.: Multiplier algebras of complete Nevanlinna-Pick spaces: dilations, boundary representations and hyperrigidity. J. Funct. Anal. 274, 1690–1738 (2018)
Davidson, K., Le, T.: Commutant lifting for commuting row contractions. Bull. Lond. Math. Soc. 42, 506–516 (2010)
Eschmeier, J., Putinar, M.: Spherical contractions and interpolation problems on the unit ball. J. Reine Angew. Math. 542, 219–236 (2002)
Foias, C., Frazho, A., Gohberg, I., Kaashoek, M.A.: Metric constrained interpolation, commutant lifting and systems. In: Operator Theory: Advances and Applications, vol. 100. Birkhäuser Verlag, Basel (1998)
Kumari, R., Sarkar, J., Sarkar, S., Timotin, D.: Factorization of kernels and reproducing kernel Hilbert spaces. Integral Equ. Oper. Theory 87, 225–244 (2017)
Muller, V., Vasilescu, F.-H.: Standard models for some commuting multioperators. Proc. Am. Math. Soc. 117, 979–989 (1993)
Nevanlinna, R.: Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen. Ann. Acad. Sci. Fenn. Sel A. 13, 1–72 (1919)
Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, vol. 152. Cambridge University Press, Cambridge (2016)
Pick, G.: Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden. Math. Ann. 77, 7–23 (1916)
Sarason, D.: Generalized interpolation in \(H^\infty \). Trans. Am. Math. Soc. 127, 179–203 (1967)
Sarkar, J.: An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces—II. Complex Anal. Oper. Theory 10, 769–782 (2016)
Acknowledgements
The research of the second named author is supported by NBHM (National Board of Higher Mathematics, India) post-doctoral Fellowship No: 0204/27-/2019/R&D-II/12966. The research of the third named author is supported in part by NBHM Grant NBHM/R.P.64/2014, and the Mathematical Research Impact Centric Support (MATRICS) Grant, File No: MTR/2017/000522 and Core Research Grant, File No: CRG/2019/000908, by the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India. The third author also would like to thanks the Institute of Mathematics of the Romanian Academy, Bucharest, Romania, for its warm hospitality during a visit in May 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Deepak, K.D., Pradhan, D.K., Sarkar, J. et al. Commutant Lifting and Nevanlinna–Pick Interpolation in Several Variables. Integr. Equ. Oper. Theory 92, 27 (2020). https://doi.org/10.1007/s00020-020-02582-9
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00020-020-02582-9
Keywords
- Commutant lifting theorem
- Nevanlinna–Pick interpolation
- Weighted Bergman spaces
- Dilations
- Multipliers
Mathematics Subject Classification
- 30E05
- 47A13
- 47A20
- 34L25
- 47B32
- 47B35
- 32A35
- 32A36
- 32A38