Skip to main content
Log in

On the Difference of Spectral Projections

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

For a semibounded self-adjoint operator T and a compact self-adjoint operator S acting on a complex separable Hilbert space of infinite dimension, we study the difference \( D(\lambda ) := E_{(-\infty , \lambda )}(T+S) - E_{(-\infty , \lambda )}(T), \, \lambda \in \mathbb {R} \), of the spectral projections associated with the open interval \( (-\infty , \lambda ) \). In the case when S is of rank one, we show that \( D(\lambda ) \) is unitarily equivalent to a block diagonal operator \( \Gamma _{\lambda } \oplus 0 \), where \( \Gamma _{\lambda } \) is a bounded self-adjoint Hankel operator, for all \( \lambda \in \mathbb {R} \) except for at most countably many \( \lambda \). If, more generally, S is compact, then we obtain that \( D(\lambda ) \) is unitarily equivalent to \( \Gamma _{\lambda } + \Lambda _{\lambda } \) for all \( \lambda \in \mathbb {R} \) except for at most countably many \( \lambda \), where \( \Gamma _{\lambda } \) is a bounded self-adjoint Hankel operator and \( \Lambda _{\lambda } \) is a compact self-adjoint operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy, J., Zelenko, L.: Finite-dimensional perturbations of self-adjoint operators. Integr. Equ. Oper. Theory 34, 127–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator. E-print arXiv:0810.2965v1 [math.DS] (2008)

  3. Behncke, H.: Finite dimensional perturbations. Proc. Am. Math. Soc. 72, 82–84 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel, Dordrecht (1987)

    Google Scholar 

  5. Birman, M.S., Solomyak, M.: Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory 47, 131–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Damanik, D., Killip, R., Simon, B.: Schrödinger operators with few bound states. Commun. Math. Phys. 258, 741–750 (2005)

    Article  MATH  Google Scholar 

  7. Davis, C.: Separation of two linear subspaces. Acta Sci. Math. Szeged 19, 172–187 (1958)

    MathSciNet  MATH  Google Scholar 

  8. Deift, P., Simon, B.: Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension. Commun. Math. Phys. 90, 389–411 (1983)

    Article  MATH  Google Scholar 

  9. Farforovskaja, Ju, B.: An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 146–153 (1972) (Russian). English transl.: J. Soviet. Math. Sci. 4, 426–433 (1975)

  10. Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howland, J.S.: Spectral theory of self-adjoint Hankel matrices. Mich. Math. J. 33, 145–153 (1986)

    Article  MATH  Google Scholar 

  12. Jakšić, V., Last, Y.: A new proof of Poltoratskii’s theorem. J. Funct. Anal. 215, 103–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klenke, A.: Probability Theory. Springer, London (2014)

    Book  MATH  Google Scholar 

  14. Knapp, A.W.: Basic Real Analysis. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  15. Kostrykin, V., Makarov, K.A.: On Krein’s example. Proc. Am. Math. Soc. 136, 2067–2071 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kreĭn, M.G.: On the trace formula in perturbation theory. Mat. Sbornik N.S. 33(75), 597–626 (1953) (Russian)

  17. Kreĭn, M.G.: Some new studies in the theory of perturbations of self-adjoint operators, in First Math. Summer School, Part I, Naukova Dumka, Kiev, 1964, pp. 103–187 (Russian). English transl.: On certain new studies in the perturbation theory for selfadjoint operators, in Topics in Differential and Integral Equations and Operator Theory. Birkhäuser, Basel 1983, 107–172

  18. Last, Y.: Spectral theory of Sturm–Liouville operators on infinite intervals: a review of recent developments. In: Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.) Sturm–Liouville Theory: Past and Present, pp. 99–120. Birkhäuser, Basel (2005)

  19. Liaw, C., Treil, S.: Rank one perturbations and singular integral operators. J. Funct. Anal. 257, 1947–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martínez-Avendaño, R.A., Treil, S.R.: An inverse spectral problem for Hankel operators. J. Oper. Theory 48, 83–93 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Megretskiĭ, A.V., Peller, V.V., Treil, S.R.: The inverse spectral problem for self-adjoint Hankel operators. Acta Math. 174, 241–309 (1995)

    Article  MathSciNet  Google Scholar 

  22. Parthasarathy, K.R.: Introduction to Probability and Measure. Hindustan Book Agency, New Delhi (2005)

    Book  MATH  Google Scholar 

  23. Peller, V.V.: Hankel operators in the perturbation theory of unbounded self-adjoint operators. In: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. vol. 122. Dekker, New York, pp. 529–544 (1990)

  24. Peller, V.V.: Hankel operators in the perturbation theory of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen. 19, 37–51 (1985) (Russian). English transl.: Functional. Anal. Appl. 19 (1985), 111–123

  25. Peller, V.V.: Hankel Operators and Their Applications. Springer, New York (2003)

    Book  MATH  Google Scholar 

  26. Pushnitski, A.: The scattering matrix and the differences of spectral projections. Bull. Lond. Math. Soc. 40, 227–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pushnitski, A.: Spectral theory of discontinuous functions of self-adjoint operators: essential spectrum. Integr. Equ. Oper. Theory 68, 75–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pushnitski, A.: Scattering matrix and functions of self-adjoint operators. J. Spectr. Theory 1, 221–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pushnitski, A., Yafaev, D.: Spectral theory of discontinuous functions of self-adjoint operators and scattering theory. J. Funct. Anal. 259, 1950–1973 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pushnitski, A., Yafaev, D.: Spectral theory of piecewise continuous functions of self-adjoint operators. Proc. Lond. Math. Soc. (3) 108, 1079–1115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Radjavi, H.: Structure of \( A^{\ast } A - A A^{\ast } \). J. Math. Mech. 16, 19–26 (1966)

    MathSciNet  MATH  Google Scholar 

  32. Rosenblum, M.: On the Hilbert matrix, I. Proc. Am. Math. Soc. 9, 137–140 (1958)

    MathSciNet  MATH  Google Scholar 

  33. Rosenblum, M.: On the Hilbert matrix, II. Proc. Am. Math. Soc. 9, 581–585 (1958)

    MathSciNet  MATH  Google Scholar 

  34. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  35. Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 283–288. Imperial College Press, London (2000)

  36. Simon, B.: Schrödinger operators with purely discrete spectrum. Methods Funct. Anal. Topol. 15, 61–66 (2009)

    MATH  Google Scholar 

  37. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  38. Wang, F.-Y., Wu, J.-L.: Compactness of Schrödinger semigroups with unbounded below potentials. Bull. Sci. Math. 132, 679–689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Uebersohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uebersohn, C. On the Difference of Spectral Projections. Integr. Equ. Oper. Theory 90, 48 (2018). https://doi.org/10.1007/s00020-018-2474-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2474-2

Keywords

Mathematics Subject Classification

Navigation