Skip to main content
Log in

Aleksandrov–Clark Theory for Drury–Arveson Space

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Recent work has demonstrated that Clark’s theory of unitary perturbations of the backward shift on a deBranges–Rovnyak space on the disk has a natural extension to the several-variable setting. In the several-variable case, the appropriate generalization of the Schur class of contractive analytic functions is the closed unit ball of the Drury–Arveson multiplier algebra and the Aleksandrov–Clark measures are necessarily promoted to positive linear functionals on a symmetrized subsystem of the Free Disk operator system \(\mathcal {A} _d + \mathcal {A} _d ^*\), where \(\mathcal {A} _d\) is the Free or Non-commutative Disk Algebra on d generators. We continue this program for vector-valued Drury–Arveson space by establishing the existence of a canonical ‘tight’ extension of any Aleksandrov–Clark map to the full Free Disk operator system. We apply this tight extension to generalize several earlier results and we characterize all extensions of the Aleksandrov–Clark maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulsen, V., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, Cambridge (2016)

    Book  MATH  Google Scholar 

  2. Hoffman, K.: Banach Spaces of Analytic Functions. Courier Corporation, North Chelmsford (2007)

    Google Scholar 

  3. de Branges, L., Rovnyak, J.: Square Summable Power Series. Courier Corporation, North Chelmsford (2015)

    MATH  Google Scholar 

  4. de Branges, L., Rovnyak, J.: Appendix on square summable power series, Canonical models in quantum scattering theory. In: Perturbation Theory and Its Applications in Quantum Mechanics, pp. 295–392. Wiley (1966)

  5. Nikolskii, N.K., Vasyunin, V.I.: Notes on two function models in the Bieberbach conjecture. In: The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof, Math. Surveys, vol. 21, pp. 113–141. Am. Math. Soc., (1986)

  6. Ball, J.A., Kriete, T.L.: Operator-valued Nevanlinna–Pick kernels and the functional models for contraction operators. Integral Equ. Oper. Theory 10, 17–61 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball, J.A., Bolotnikov, V.: Canonical transfer-function realization for Schur multipliers on the Drury–Arveson space and models for commuting row contractions. Indiana Univ. Math. J. 61, 665–716 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk. Wiley, New York (1994)

    MATH  Google Scholar 

  9. Martin, R.T.W., Ramanantoanina, A.: A Gleason solution model for row contractions. Oper. Theory Adv. Appl. (2017)

  10. Clark, D.N.: One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jury, M.T.: Clark theory in the Drury–Arveson space. J. Funct. Anal. 266, 3855–3893 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cima, J.A., Matheson, A.L., Ross, W.T.: The Cauchy transform. Am. Math. Soc. 156(125), 79 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Popescu, G.: Non-commutative disc algebras and their representations. Proc. Am. Math. Soc. 124, 2137–2148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davidson, K.R., Katsoulis, E., Pitts, D.R.: The structure of free semigroup algebras. J. Reine Angew. Math. 533, 99–126 (2001)

    MathSciNet  MATH  Google Scholar 

  15. McCarthy, J.E., Putinar, M.: Positivity aspects of the Fantappie transform. J. Anal. Math. 97, 57–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jury, M.T.: Operator-valued Herglotz kernels and functions of positive real part on the ball. Compl. Anal. Oper. Theory 4, 301–317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ball, J.A., Trent, T.T., Vinnikov, V.: Interpolation and commutant lifting for multipliers on reproducing kernel hilbert spaces. In: Operator Theory and Analysis, Oper. Theory Adv. Appl., pp. 89–138. Springer (2001)

  18. Sz.-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. Elsevier, New York (1970)

    MATH  Google Scholar 

  19. Rudin, W.: Function Theory in the Unit Ball of \({\mathbb{C}}^n\). Springer, New York (2012)

    Google Scholar 

  20. Popescu, G.: Isometric dilations for infinite sequences of noncommuting operators. Trans. Am. Math. Soc. 316, 523–536 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davidson, K.R., Li, J., Pitts, D.R.: Absolutely continuous representations and a Kaplansky density theorem for free semigroup algebras. J. Funct. Anal. 224, 160–191 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Popescu, G.: Universal operator algebras associated to contractive sequences of non-commuting operators. J. Lond. Math. Soc. 2(58), 467–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davidson, K.R., Katsoulis, E.G.: Dilation theory, commutant lifting and semicrossed products. Doc. Math. 16, 781–868 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  25. Sarason, D.: On spectral sets having connected complement. Acta Sci. Math. (Szeged) 26, 289–299 (1965)

    MathSciNet  MATH  Google Scholar 

  26. Arveson, W.B.: Subalgebras of C\(^*\)-algebras III. Acta Math. 181, 159–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ball, J.A., Bolotnikov, V., Fang, Q.: Schur-class multipliers on the Arveson space: de Branges–Rovnyak reproducing kernel spaces and commutative transfer-function realizations. J. Math. Anal. Appl. 341, 519–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gleason, A.M.: Finitely generated ideals in Banach algebras. J. Math. Mech. 13, 125 (1964)

    MathSciNet  MATH  Google Scholar 

  29. Alpay, D., Kaptanoğlu, H.T.: Gleason’s problem and homogeneous interpolation in Hardy and Dirichlet-type spaces of the ball. J. Math. Anal. Appl. 276, 654–672 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ball, J.A., Bolotnikov, V.: Canonical de Branges–Rovnyak model transfer-function realization for multivariable Schur-class functions. In: CRM Proceedings and Lecture Notes, vol. 51, pp. 1–40 (2010)

  31. Bhattacharyya, T., Eschmeier, J., Sarkar, J.: On C.N.C. commuting contractive tuples. Proc. Indian Acad. Sci. Math. Sci. 116, 299–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ball, J.A., Bolotnikov, V., Fang, Q.: Transfer-function realization for multipliers of the Arveson space. J. Math. Anal. Appl. 333, 68–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ball, J.A., Vinnikov, V.: Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings. In Reproducing kernel spaces and applications, Oper. Theory Adv. Appl. 143, 77–134 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Ball, J.A., Marx, G., Vinnikov, V.: Noncommutative reproducing kernel Hilbert spaces. J. Funct. Anal. 271, 1844–1920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jury, M.T., Martin, R.T.W.: Noncommutative Clark measures for the free and Abelian Toeplitz algebras. J. Math. Anal. Appl. 456, 1062–1100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jury, M.T., Martin, R.T.W.: Extremal multipliers of the Drury–Arveson space. In: Proceedings of American Mathematical Society (2018). arXiv:1608.04327 (To appear)

  37. Shalit, O.M.: Operator theory and function theory in Drury–Arveson space and its quotients. In: Handbook of Operator Theory, pp. 1125–1180. Springer (2015)

  38. McCullough, S., Trent, T.T.: Invariant subspaces and Nevanlinna–Pick kernels. J. Funct. Anal. 178, 226–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Arveson, W.B.: The curvature invariant of a Hilbert module over \(\mathbb{C} [z_1,., z_d]\). Proc. Natl. Acad. Sci. USA 96, 11096–11099 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Greene, D.C.V., Richter, S., Sundberg, C.: The structure of inner multipliers on spaces with complete Nevanlinna–Pick kernels. J. Funct. Anal. 194, 311–331 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Jury.

Additional information

R. T. W. Martin: Second author acknowledges support of NRF CPRR Grant 90551.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jury, M.T., Martin, R.T.W. Aleksandrov–Clark Theory for Drury–Arveson Space. Integr. Equ. Oper. Theory 90, 45 (2018). https://doi.org/10.1007/s00020-018-2470-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2470-6

Keywords

Mathematics Subject Classification

Navigation