Skip to main content
Log in

On an Integral Formula for Fredholm Determinants Related to Pairs of Spectral Projections

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider Fredholm determinants of the form identity minus product of spectral projections corresponding to isolated parts of the spectrum of a pair of self-adjoint operators. We show an identity relating such determinants to an integral over the spectral shift function in the case of a rank-one perturbation. More precisely, we prove

$$\begin{aligned} -\ln \left( \det \big (\mathbf {1} -\mathbf {1} _{I}(A) \mathbf {1}_{\mathbb R\backslash I}(B)\mathbf {1}_{I}(A)\big ) \right) = \int _I \text {d} x \int _{\mathbb R\backslash I} \text {d} y\, \frac{\xi (x)\xi (y)}{(y-x)^2}, \end{aligned}$$

where \(\mathbf {1}_J (\cdot )\) denotes the spectral projection of a self-adjoint operator on a set \(J\in \text {Borel}(\mathbb R)\). The operators A and B are self-adjoint, bounded from below and differ by a rank-one perturbation and \(\xi \) denotes the corresponding spectral shift function. The set I is a union of intervals on the real line such that its boundary lies in the resolvent set of A and B and such that the spectral shift function vanishes there i.e. I contains isolated parts of the spectrum of A and B. We apply this formula to the subspace perturbation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Motovilov, A.K.: Sharpening the norm bound in the subspace perturbation theory. Complex Anal. Oper. Theory 7, 1389–1416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  4. Dietlein, A., Gebert, M., Müller, P.: Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. J. Spectr. Theory. e-print arXiv:1701.02956 (to appear)

  5. Deift, P.A., Its, A.R., Zhou, X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. 2(146), 149–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frank, R.L., Pushnitski, A.: The spectral density of a product of spectral projections. J. Funct. Anal. 268, 3867–3894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gebert, M.: The asymptotics of an eigenfunction-correlation determinant for Dirac-\(\delta \) perturbations. J. Math. Phys. 56, 072110-1-18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gebert, M., Küttler, H., Müller, P.: Anderson’s orthogonality catastrophe. Commun. Math. Phys. 329, 979–998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gebert, M., Küttler, H., Müller, P., Otte, P.: The exponent in the orthogonality catastrophe for Fermi gases. J. Spectr. Theory 6, 643–683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gesztesy, F., Nichols, R.: An abstract approach to weak convergence of spectral shift functions and applications to multi-dimensional Schrödinger operators. J. Spectr. Theory 2, 225–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hislop, P.D., Müller, P.: The spectral shift function for compactly supported perturbations of Schrödinger operators on large bounded domains. Proc. Am. Math. Soc. 138, 2141–2150 (2010)

    Article  MATH  Google Scholar 

  12. Kostrykin, V., Makarov, K.A., Motovilov, A.K.: On a subspace perturbation problem. Proc. Am. Math. Soc. 131, 3469–3476 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Küttler, H., Otte, P., Spitzer, W.: Anderson’s orthogonality catastrophe for one-dimensional systems. Ann. Henri Poincaré 15, 1655–1696 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knörr, H.K., Otte, P., Spitzer, W.: Anderson’s orthogonality catastrophe in one dimension induced by a magnetic field. J. Phys. A 48, 325202-1-17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liaw, C., Treil, S.: Rank one perturbations and singular integral operators. J. Funct. Anal. 257, 1947–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Makarov, K.A., Seelmann, A.: The length metric on the set of orthogonal projections and new estimates in the subspace perturbation problem. J. Reine Angew. Math. 708, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ohtaka, K., Tanabe, Y.: Theory of the soft-X-ray edge problem in simple metals: historical survey and recent developments. Rev. Mod. Phys. 62, 929–991 (1990)

    Article  Google Scholar 

  18. Otte, P.: An integral formula for section determinants of semi-groups of linear operators. J. Phys. A 32, 3793–3803 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Otte, P.: An adiabatic theorem for section determinants of spectral projections. Math. Nachr. 278, 470–484 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Seelmann, A.: Notes on the \(\sin 2\Theta \) theorem. Integral Equ. Oper. Theory 79, 579–597 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon, B.: Spectral averaging and the Krein spectral shift. Proc. Am. Math. Soc. 126, 1409–1413 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Simon, B.: Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)

    Google Scholar 

  24. Teschl, G.: Mathematical Methods in Quantum Mechanics, Graduate Studies in Mathematics, vol. 99. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  25. Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)

    MATH  Google Scholar 

  26. Yafaev, D.R.: Mathematical Scattering Theory. General Theory. American Mathematical Society, Providence (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

M.G. thanks Alexander Pushnitski, Peter Müller and especially Adrian Dietlein for many illuminating discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gebert.

Additional information

M.G. was supported by the DFG under Grant GE 2871/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebert, M. On an Integral Formula for Fredholm Determinants Related to Pairs of Spectral Projections. Integr. Equ. Oper. Theory 90, 35 (2018). https://doi.org/10.1007/s00020-018-2461-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2461-7

Keywords

Mathematics Subject Classification

Navigation