Quasidiagonality of \(C^*\)-Algebras of Solvable Lie Groups

  • Ingrid Beltiţă
  • Daniel Beltiţă


We characterize the solvable Lie groups of the form \({\mathbb {R}}^m\rtimes {\mathbb {R}}\), whose \(C^*\)-algebras are quasidiagonal. Using this result, we determine the connected simply connected solvable Lie groups of type I whose \(C^*\)-algebras are strongly quasidiagonal. As a by-product, we give also examples of amenable Lie groups with non-quasidiagonal \(C^*\)-algebras.


Unitary dual \(ax+b\)-Group Solvable Lie group Quasidiagonal \(C^*\)-algebra 

Mathematics Subject Classification

Primary 22D25 Secondary 22E27 



We wish to thank the referee for carefully reading of our manuscript and several remarks that improved the presentation.


  1. 1.
    Abdelmoula, L., Arnal, D., Selmi, M.: Separation of unitary representations of \({\mathbb{R}} \times {\mathbb{R}}^d\). J. Lie Theory 14(2), 427–441 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Archbold, R.J., an Huef, A.: The \(C^*\)-algebras of compact transformation groups. Can. J. Math. 67(3), 481–506 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auslander, L., Moore, C.C.: Unitary representations of solvable Lie groups. In: Memoirs of the American Mathematical Society, vol. 62. American Mathematical Society (1966)Google Scholar
  4. 4.
    Barut, A.O., Ra̧czka, R.: Theory of group representations and applications, 2nd edn. World Scientific Publishing Co., Singapore (1986)CrossRefGoogle Scholar
  5. 5.
    Beltiţă, I., Beltiţă, D.: On \(C^*\)-algebras of exponential solvable Lie groups and their real ranks. J. Math. Anal. Appl. 437(1), 51–58 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beltiţă, I., Beltiţă, D.: \(C^*\)-dynamical systems of solvable Lie groups. Transform. Groups (to appear)
  7. 7.
    Beltiţă, I., Beltiţă, D., Galé, J.E.: Transference for Banach space representations of nilpotent Lie groups. Preprint arXiv:1511.08359 [math.RT]
  8. 8.
    Beltiţă, I., Beltiţă, D., Ludwig, J.: Fourier transforms of \(C^*\)-algebras of nilpotent Lie groups. Int. Math. Res. Not. IMRN 3, 677–714 (2017)MathSciNetGoogle Scholar
  9. 9.
    Brown, N.P.: On quasidiagonal \(C^*\)-algebras. In: Kosaki, H. (ed.) Operator algebras and applications. Advanced Studies in Pure Mathematics, vol. 38, pp. 19–64. The Mathematical Society of Japan, Tokyo (2004)Google Scholar
  10. 10.
    Brown, N.P., Dădărlat, M.: Extensions of quasidiagonal \(C^*\)-algebras and K-theory. In: Kosaki, H. (ed.) Operator algebras and applications. Advanced Studies in Pure Mathematics, vol. 38, pp. 65–84. The Mathematical Society of Japan, Tokyo (2004)Google Scholar
  11. 11.
    Brown, N.P., Ozawa, N.: \(C^*\)-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  12. 12.
    Colonius, F., Kliemann, W.: Dynamical systems and linear algebra. Graduate Studies in Mathematics, vol. 158. American Mathematical Society, Providence (2014)zbMATHGoogle Scholar
  13. 13.
    Davidson, K.R.: \(C^*\)-algebras by example. Fields Institute Monographs, vol. 6. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  14. 14.
    Fujiwara, H., Ludwig, J.: Harmonic analysis on exponential solvable Lie groups. Springer Monographs in Mathematics. Springer, Tokyo (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hadwin, D.: Strongly quasidiagonal \(C^*\)-algebras. With an appendix by Jonathan Rosenberg. J. Oper. Theory 18(1), 3–18 (1987)zbMATHGoogle Scholar
  16. 16.
    Ladis, N.N.: Topological equivalence of linear flows (Russian). Differencialnye Uravnenija 9, 1222–1235 (1973)MathSciNetGoogle Scholar
  17. 17.
    Lin, Y.-F., Ludwig, J.: An isomorphism between group \(C^\ast \)-algebras of \(ax+b\)-like groups. Bull. Lond. Math. Soc. 45(2), 257–267 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pedersen, G.K.: \(C^{\ast } \)-algebras and their automorphism groups. London Mathematical Society Monographs, vol. 14. Academic Press, London, New York (1979)zbMATHGoogle Scholar
  19. 19.
    Phillips, N.C.: Equivariant \(K\)-theory and freeness of group actions on \(C^*\)-algebras. Lecture Notes in Mathematics, vol. 1274. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pimsner, M.V.: Embedding covariance algebras of flows into AF-algebras. Ergod. Theory Dyn. Syst. 19(3), 723–740 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rosenberg, J.: The \(C^*\)-algebras of some real and \(p\)-adic solvable groups. Pac. J. Math. 65(1), 175–192 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rosenberg, J.: Appendix to: “Crossed products of UHF algebras by product type actions” Duke Math. J. 46(1) (1979), no. 1, 123; by O. Bratteli. Duke Math. J. 46(1), 25–26 (1979)Google Scholar
  23. 23.
    Spronk, N., Wood, P.: Diagonal type conditions on group \(C^*\)-algebras. Proc. Am. Math. Soc. 129(2), 609–616 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear \(C^*\)-algebras. Ann. Math. (2) 185(1), 229–284 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Voiculescu, D.: Around quasidiagonal operators. Integral Equ. Oper. Theory 17(1), 137–149 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Williams, D.P.: The topology on the primitive ideal space of transformation group \(C^*\)-algebras and C.C.R. transformation group \(C^*\)-algebras. Trans. Am. Math. Soc. 266(2), 335–359 (1981)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Williams, D.P.: Crossed products of \(C^*\)-algebras. Mathematical Surveys and Monographs, vol. 134. American Mathematical Society, Providence (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations