On the Factorization of Matrices Over Commutative Banach Algebras

  • Alexander Brudnyi


Let A be a commutative unital complex Banach algebra and let \(GL_n(A)\) be the group of invertible \(n\times n\) matrices with entries in A. In this paper we study the problem of the representation of matrices in \(GL_n(A)\) by finite products of upper and lower triangular matrices.


Commutative unital Banach algebra Unitriangular matrix Maximal ideal space Dimension Functional calculus 

Mathematics Subject Classification

Primary 47B48 Secondary 20H25 



I thank the anonymous referee for useful comments.


  1. 1.
    Arens, R., Calderon, A.P.: Analytic functions of several Banach algebra elements. Ann. Math. 62, 204–216 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bass, H.: \(K\)-theory and stable algebra. Publ. Mat. I.H.E.S 22, 5–60 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brudnyi, A., Rodman, L., Spitkovsky, I.M.: Projective free algebras of continuous functions on compact abelian groups. J. Funct. Anal. 259, 918–932 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brudnyi, A., Rodman, L., Spitkovsky, I.M.: Factorization versus invertibility of matrix functions on compact abelian groups. Oper. Theory Adv. Appl. 218, 225–239 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cohn, P.M.: On the structure of the \(GL_2\) of a ring. Inst. Hautes Études Sci. Publ. Math. 30, 5–53 (1966)CrossRefGoogle Scholar
  6. 6.
    Corach, G., Suárez, F.: Stable rank in holomorphic function algebras. Ill. J. Math. 29, 627–639 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dennis, R.K., Vaserstein, L.N.: On a question of M. Newman on the number of commutators. J. Algebra 118, 150–161 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Forstnerič, F.: The Oka principle for sections of stratified fiber bundles. Pure Appl. Math. Q. 6, 843–874 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2, 851–897 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hu, S.T.: Mappings of a normal space into an absolute neighbourhood retract. Trans. Am. Math. Soc. 64, 336–358 (1948)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ivarsson, B., Kutzschebauch, F.: Holomorphic factorization of mappings into \(SL_n(\mathbb{C})\). Ann. Math. 175, 45–69 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ivarsson, B., Kutzschebauch, F.: On the number of factors in the unipotent factorization of holomorphic mappings into \(SL_2(\mathbb{C})\). Proc. Am. Math. Soc. 140(3), 823–838 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Milnor, J.: Introduction to algebraic K-theory. Ann. Math. Stud. No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. xiii+184 pp (1971)Google Scholar
  14. 14.
    Royden, H.L.: Function algebras. Bull. Am. Math. Soc. 69(3), 281–298 (1963)CrossRefzbMATHGoogle Scholar
  15. 15.
    Suslin, A.A.: On the structure of the special linear group over rings of polynomials. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 235–252 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Vaserstein, L.N.: Reduction of a matrix depending on parameters to a diagonal form by addition operations. Proc. Am. Math. Soc. 103, 741–746 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    van der Kallen, W.: \(SL_3({\mathbb{C}}[X])\) does not have bounded word length. In: Algebraic \(K\)-theory, Part I (Oberwolfach, 1980). Lecture Notes in Math. 966, Springer, pp. 357–361 (1982)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations