Skip to main content
Log in

Estimate for Norm of a Composition Operator on the Hardy–Dirichlet Space

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

By using the Schur test, we give some upper and lower estimates on the norm of a composition operator on \(\mathcal {H}^2\), the space of Dirichlet series with square summable coefficients, for the inducing symbol \(\varphi (s)=c_1+c_{q}q^{-s}\) where \(q\ge 2\) is a fixed integer. We also give an estimate on the approximation numbers of such an operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel, M.J., Bourdon, P.S., Thrall, J.J.: Norms of composition operators on the Hardy space. Exp. Math. 5(2), 111–117 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayart, F.: Compact composition operators on a Hilbert space of Dirichlet series. Ill. J. Math. 47(3), 725–743 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Bayart, F.: Composition operators on the polydisk induced by affine maps. J. Funct. Anal. 260(7), 1969–2003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brevig, O.F.: Sharp norm estimates for composition operators and Hilbert-type inequalities. Bull. Lond. Math. Soc. 49(6), 965–978 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  6. Clifford, J.H., Dabkowski, M.G.: Singular values and Schmidt pairs of composition operators on the Hardy space. J. Math. Anal. Appl. 305(1), 183–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowen, C.C.: Linear fractional composition operators on $H^2$. Integral Equ. Oper. Theory 11(2), 151–160 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  9. Gordon, J., Hedenmalm, H.: The composition operators on the space of Dirichlet series with square summable coefficients. Mich. Math. J. 46(2), 313–329 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halmos, P.R.: A Hilbert Space Problem Book, 2nd edn. Springer, New York (1982)

    Book  MATH  Google Scholar 

  11. Hammond, C.: The norm of a composition operator with linear symbol acting on the Dirichlet space. J. Math. Anal. Appl. 303(2), 499–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hedenmalm, H.: Dirichlet series and functional analysis. In: Laudal, O.A., Piene, R. (eds.) The legacy of Niels Henrik Abel. Springer, Berlin, Heidelberg (2004)

  13. Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $L^{2}(0,1)$. Duke Math. J. 86(1), 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hlawka, E., Schoissengeier, J., Taschner, R.: Geometric and Analytic Number Theory. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  15. Hurst, P.R.: Relating composition operators on different weighted Hardy spaces. Arch. Math. (Basel) 68(6), 503–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lavrik, A.F.: On the main term of the divisor’s problem and the power series of the Riemann’s zeta function in a neighbourhood of its pole. Trudy Mat. Inst. Akad. Nauk. SSSR 142, 165–173 (1976). (in Russian)

    MathSciNet  Google Scholar 

  17. Ponnusamy, S.: Foundations of Mathematical Analysis. Springer, New York (2012)

    Book  MATH  Google Scholar 

  18. Queffélec, H.: Norms of composition operators with affine symbols. J. Anal. 20, 47–58 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Queffélec, H., Seip, K.: Approximation numbers of composition operators on the $H^2$ space of Dirichlet series. J. Funct. Anal. 268(6), 1612–1648 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs, vol. 138, 2nd edn. American Mathematical Society, Providence (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for many useful comments. The first author thanks the Council of Scientific and Industrial Research (CSIR), India, for providing financial support in the form of a SPM Fellowship to carry out this research. The third author thanks the Indian Statistical Institute of Chennai for providing good and friendly working conditions in December 2015, when this collaboration was initiated. The second author is currently at ISI Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saminathan Ponnusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, P., Ponnusamy, S. & Queffélec, H. Estimate for Norm of a Composition Operator on the Hardy–Dirichlet Space. Integr. Equ. Oper. Theory 90, 11 (2018). https://doi.org/10.1007/s00020-018-2434-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2434-x

Keywords

Mathematics Subject Classification

Navigation