Big Hankel Operators on Vector-Valued Fock Spaces in \(\mathbb {C}^d\)

Open Access
Article
  • 60 Downloads

Abstract

We study big Hankel operators acting on vector-valued Fock spaces with radial weights in \(\mathbb {C}^d\). We provide complete characterizations for the boundedness, compactness and Schatten class membership of such operators.

Keywords

Hankel operators Vector-valued Fock spaces 

Mathematics Subject Classification

47B35 30H20 30H30 

References

  1. 1.
    Aleman, A., Constantin, O.: Hankel operators on Bergman spaces and similarity to contractions. Int. Math. Res. Not. 2004(35), 1785–1801 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aleman, A., Perfekt, K.M.: Hankel forms and embedding theorems in weighted Dirichlet spaces. Int. Math. Res. Not. IMRN 2012(19), 4435–4448 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bauer, W.: Mean oscillation and Hankel operators on the Segal–Bargmann space. Integral Equ. Oper. Theory 52, 1–15 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bauer, W.: Hilbert–Schmidt Hankel operators on the Segal–Bargmann space. Proc. Am. Math. Soc. 132, 2989–2996 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Békollé, D., Berger, C.A., Coburn, L.A., Zhu, K.: BMO in the Bergman metric on bounded symmetric domains. J. Funct. Anal. 93, 310–350 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin-New York (1976)CrossRefMATHGoogle Scholar
  7. 7.
    Berndtsson, B., Charpentier, P.: A Sobolev mapping property of the Bergman kernel. Math. Z. 235, 1–10 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bommier-Hato, H., Youssfi, E.-H.: Hankel operators and the Stieltjes moment problem. J. Funct. Anal. 258, 978–998 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Constantin, O., Ortega-Cerdà, J.: Some spectral properties of the canonical solution operator to \({\bar{\partial }}\) on weighted Fock spaces. J. Math. Anal. Appl. 377, 353–361 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Math. Monogr. American Mathematical Society, Providence (1969)MATHGoogle Scholar
  11. 11.
    Grafakos, L.: Classical Fourier analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Lin, P., Rochberg, R.: Hankel operators on the weighted Bergman spaces with exponential type weights. Integral Equ. Oper. Theory 21(4), 460–483 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003)CrossRefMATHGoogle Scholar
  14. 14.
    Seip, K., Youssfi, E.-H.: Hankel operators on Fock spaces and related Bergman kernel estimates. J. Geom. Anal. 23, 170–201 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Talagrand, M.: Pettis integral and measure theory. Mem. Amer. Math. Soc. 51(307), 224 (1984)MathSciNetMATHGoogle Scholar
  16. 16.
    Timoney, R.M.: Bloch functions in several complex variables. I. Bull. Lond. Math. Soc. 12(4), 241–267 (1980)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Timoney, R.M.: M. Bloch functions in several complex variables. II. J. Reine Angew. Math. 319, 1–22 (1980)MathSciNetMATHGoogle Scholar
  18. 18.
    Wang, X., Cao, G., Zhu, K.: BMO and Hankel operators on Fock-type spaces. J. Geom. Anal. 25(3), 1650–1665 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zhu, K.: Spaces of holomorphic functions in the unit ball. Springer, New York (2005)MATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Institut de Mathématiques de MarseilleUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations