Advertisement

Big Hankel Operators on Vector-Valued Fock Spaces in \(\mathbb {C}^d\)

  • Hélène Bommier-Hato
  • Olivia Constantin
Open Access
Article

Abstract

We study big Hankel operators acting on vector-valued Fock spaces with radial weights in \(\mathbb {C}^d\). We provide complete characterizations for the boundedness, compactness and Schatten class membership of such operators.

Keywords

Hankel operators Vector-valued Fock spaces 

Mathematics Subject Classification

47B35 30H20 30H30 

References

  1. 1.
    Aleman, A., Constantin, O.: Hankel operators on Bergman spaces and similarity to contractions. Int. Math. Res. Not. 2004(35), 1785–1801 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aleman, A., Perfekt, K.M.: Hankel forms and embedding theorems in weighted Dirichlet spaces. Int. Math. Res. Not. IMRN 2012(19), 4435–4448 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bauer, W.: Mean oscillation and Hankel operators on the Segal–Bargmann space. Integral Equ. Oper. Theory 52, 1–15 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bauer, W.: Hilbert–Schmidt Hankel operators on the Segal–Bargmann space. Proc. Am. Math. Soc. 132, 2989–2996 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Békollé, D., Berger, C.A., Coburn, L.A., Zhu, K.: BMO in the Bergman metric on bounded symmetric domains. J. Funct. Anal. 93, 310–350 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin-New York (1976)CrossRefzbMATHGoogle Scholar
  7. 7.
    Berndtsson, B., Charpentier, P.: A Sobolev mapping property of the Bergman kernel. Math. Z. 235, 1–10 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bommier-Hato, H., Youssfi, E.-H.: Hankel operators and the Stieltjes moment problem. J. Funct. Anal. 258, 978–998 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Constantin, O., Ortega-Cerdà, J.: Some spectral properties of the canonical solution operator to \({\bar{\partial }}\) on weighted Fock spaces. J. Math. Anal. Appl. 377, 353–361 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Math. Monogr. American Mathematical Society, Providence (1969)zbMATHGoogle Scholar
  11. 11.
    Grafakos, L.: Classical Fourier analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lin, P., Rochberg, R.: Hankel operators on the weighted Bergman spaces with exponential type weights. Integral Equ. Oper. Theory 21(4), 460–483 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Seip, K., Youssfi, E.-H.: Hankel operators on Fock spaces and related Bergman kernel estimates. J. Geom. Anal. 23, 170–201 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Talagrand, M.: Pettis integral and measure theory. Mem. Amer. Math. Soc. 51(307), 224 (1984)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Timoney, R.M.: Bloch functions in several complex variables. I. Bull. Lond. Math. Soc. 12(4), 241–267 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Timoney, R.M.: M. Bloch functions in several complex variables. II. J. Reine Angew. Math. 319, 1–22 (1980)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, X., Cao, G., Zhu, K.: BMO and Hankel operators on Fock-type spaces. J. Geom. Anal. 25(3), 1650–1665 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhu, K.: Spaces of holomorphic functions in the unit ball. Springer, New York (2005)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Institut de Mathématiques de MarseilleUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations