Advertisement

Combining Continuous and Discrete Phenomena for Feynman’s Operational Calculus in the Presence of a (\({\varvec{C}}_{\mathbf{0 }}\)) Semigroup and Feynman–Kac Formulas with Lebesgue–Stieltjes Measures

  • Lance Nielsen
Article
  • 46 Downloads

Abstract

This paper introduces the presence of a \((C_{0})\) semigroup of linear operators into the disentangling of functions of noncommuting operators in the setting where time-ordering measures with finitely supported discrete parts are allowed. Some examples are discussed. Furthermore, in this more general setting the main result of this paper, an evolution equation satisfied by disentangled exponential functions is obtained. A related generalized integral equation is also discussed. Via some detailed examples, Feynman–Kac formulas (Volterra–Stieltjes integral equations) with Lebesgue–Stieltjes measures are also derived and an associated differential equation is derived.

Keywords

Disentangling Evolution equation Lebesgue–Stieltjes measure Operational calculus Feynman–Kac formulas 

Mathematics Subject Classification

Primary 44A45 28C05 47D06 58D25n Secondary 45D99 46G12 

References

  1. 1.
    DeFacio, B., Johnson, G.W., Lapidus, M.L.: Feynman’s operational calculus and evolution equations. Acta Appl. Math. 47, 155–211 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Feynman, R.P.: An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84, 108–128 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York (1965)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jefferies, B., Johnson, G.W.: Feynman’s operational calculi for noncommuting operators: definitions and elementary properties. Russ. J. Math. Phys. 8, 153–171 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Jefferies, B., Johnson, G.W.: Feynman’s operational calculi for families of noncommuting operators: tensor products, ordered supports, and the disentangling of an exponential factor. Mat. Zametki 70, 815–838 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jefferies, B., Johnson, G.W.: Feynman’s operational calculi for noncommuting operators: the monogenic calculus. Adv. Appl. Clifford Algebras 11, 239–264 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jefferies, B., Johnson, G.W.: Feynman’s operational calculi for noncommuting operators: spectral theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 171–199 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jefferies, B., Johnson, G.W., Nielsen, L.: Feynman’s operational calculi for time dependent noncommuting operators. J. Korean Math. Soc. 38, 193–226 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Johnson, G.W., Lapidus, M.L.: Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus. Memoirs of the American Mathematical Society, No. 351, vol. 62, pp 1–78 (1986). (Reprinted by the American Mathematical Society in 1991)Google Scholar
  10. 10.
    Johnson, G.W., Lapidus, M.L.: The Feynman Integral and Feynman’s Operational Calculus, Oxford Mathematical Monographs. Oxford Science Publications. Oxford University Press, Oxford (2000). (Paperback edition and corrected reprinting, Oxford University Press, 2002; Electronic edition, 2008)Google Scholar
  11. 11.
    Johnson, G.W., Lapidus, M.L., Nielsen, L.: Feynman’s Operational Calculus and Beyond: Noncommutativity and Time-Ordering, Oxford Mathematical Monographs, Oxford Science Publications. Oxford University Press, Oxford (2015)CrossRefGoogle Scholar
  12. 12.
    Johnson, G.W., Nielsen, L.: Feynman’s operational calculi: blending instantaneous and continuous phenomena in Feynman’s operational calculi. In: Stochastic Analysis and Mathematical Physics (SAMP/ANESTOC 2002). World Scientific, River Edge, pp. 229–254 (2004)Google Scholar
  13. 13.
    Lapidus, M.L.: The differential equation for the Feynman–Kac formula with a Lebesgue–Stieltjes measure. Lett. Math. Phys. 11, 1–13 (1986). (Special issue dedicated to the memory of Mark Kac)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lapidus, M.L.: The Feynman–Kac formula with a Lebesgue–Stieltjes measure and Feynman’s operational calculus. Stud. Appl. Math. 76, 93–132 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lapidus, M.L.: The Feynman–Kac formula with a Lebesgue–Stieltjes measure: an integral equation in the general case. Integral Equ. Oper. Theory 12, 162–210 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nielsen, L.: An integral equation for Feynman’s operational calculi. Integr. Math. Theory Appl. 1, 41–58 (2008)zbMATHGoogle Scholar
  17. 17.
    Nielsen, L.: Stability properties of Feynman’s operational calculus. Ph.D. dissertation, Mathematics, University of Nebraska, Lincoln (1999)Google Scholar
  18. 18.
    Newman, D.J., Shapiro, H.S.: Certain Hilbert spaces of entire functions. Bull. Am. Math. Soc. 72, 971–977 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rezac, L.: The effect of time changes on Feynman’s operational calculus as made rigorous by Wiener and Feynman integrals. Ph.D. dissertation, Mathematics, University of Nebraska, Lincoln (2000)Google Scholar
  20. 20.
    Ryan, R.A.: Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics. Springer, London (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsCreighton UniversityOmahaUSA

Personalised recommendations