The Spectrum of Shift Operators and the Existence of Traces

  • Albrecht Pietsch


This is a counterpart of the paper ‘Commutator structure of operator ideals’ written by Dykema, Figiel, Weiss, and Wodzicki. However, contrary to them, I consistently use quasi-norms instead of gauges and replace symmetric sequence ideals as well as their characteristic sets by so-called shift-monotone sequence ideals. In this way, the Boyd index theorem of the four authors turns into a spectral radius theorem of shift operators, which can be proved in a few lines. In particular, the concept of e-completeness is no longer needed. We present several open problems, which show that substantial work remains to be done.


Operator ideal Sequence ideal Quasi-norm Shift Dilation Spectral radius Boyd index Trace 

Mathematics Subject Classification

Primary 47B10 47B37 Secondary 46B45 46A45 


  1. 1.
    Boyd, D.W.: Indices of function spaces and their relationship to interpolation. Canadian J. Math. 21, 1245–1254 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dykema, K., Figiel, T., Weiss, G., Wodzicki, M.: Commutator structure of operator ideals. Adv. Math. 185, 1–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fack, T.: Featured Review of [2], MR2058779 (2005f:47149)Google Scholar
  4. 4.
    Gramsch, B.: Integration und holomorphe Funktionen in lokalbeschränkten Räumen. Math. Ann. 162, 190–210 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gramsch, B.: \(\sigma \)-Transformationen in lokalbeschränkten Vektorräumen. Math. Ann. 165, 135–151 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Levitina, G., Pietsch, A., Sukochev, F.A., Zanin, D.: Completeness of quasi-normed operator ideals generated by \(s\)-numbers. Indag. Math. (New Ser.) 25, 49–58 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lord, S., Sukochev, F., Zanin, D.: Singular Traces. De Gruyter, Berlin (2013)zbMATHGoogle Scholar
  8. 8.
    Pietsch, A.: Operator Ideals. Deutsch. Verlag Wiss, Berlin (1978); North-Holland, Amsterdam–London–New York–Tokyo (1980)Google Scholar
  9. 9.
    Pietsch, A.: Traces on operator ideals and related linear forms on sequence ideals \((\)part I \()\). Indag. Math. (New Ser.) 25, 341–365 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pietsch, A.: Traces on operator ideals and related linear forms on sequence ideals \((\)part II \()\). Integr. Equ. Oper. Theory 79, 255–299 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pietsch, A.: Powers of symmetric sequence ideals. Integr. Equ. Oper. Theory 89, 233–256 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pietsch, A.: A new approach to operator ideals on Hilbert space and their traces. Integr. Equ. Oper. Theory 89, 595–606 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sedaev, A.A.: A symmetric non-interpolation space of the pair \(\{L_1,L_\infty \}\) which is not a subspace of an interpolation one (in Russian), Issledovaniya po Teorii Funktsij Mnogikh Veshchestvennykh Peremennykh, Yaroslavskij Gosudarstvennyj Universitet, pp. 134–139 (1990)Google Scholar
  14. 14.
    Sedaev, A.A., Semenov, E.M., Sukochev, F.A.: Fully symmetric function spaces without an equivalent Fatou norm. Positivity 19, 419–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zaanen, A.C.: Integration. North-Holland Publ, Interscience Publ. Wiley, Amsterdam, New York (1967)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.JenaGermany

Personalised recommendations