Skip to main content
Log in

Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain \(D_\beta \). We denote by \(d_b(D_\beta )\) the distinguished boundary of \(D_\beta \) and define the corresponding Hardy space \({\mathscr {H}}^2(D_\beta )\). This can be identified with a closed subspace of \(L^2(d_b(D_\beta ),d\sigma )\), that we denote by \({\mathscr {H}}^2(d_b(D_\beta ))\), where \(d\sigma \) is the naturally induced measure on \(d_b(D_\beta )\). The orthogonal Hilbert space projection \({\mathscr {P}}: L^2(d_b(D_\beta ), d\sigma )\rightarrow {\mathscr {H}}^2(d_b(D_\beta ))\) is called the Szegő projection on the distinguished boundary. We prove that \({\mathscr {P}}\), initially defined on the dense subspace \(L^2\cap L^p(d_b( D_\beta ),d\sigma )\) extends to a bounded operator \({\mathscr {P}}: L^p(d_b(D_\beta ), d\sigma )\rightarrow L^p(d_b(D_\beta ), d\sigma )\) if and only if \(\textstyle {\frac{2}{1+\nu _\beta }}<p<\textstyle {\frac{2}{1-\nu _\beta }}\) where \(\nu _\beta =\textstyle {\frac{\pi }{2\beta -\pi }}, \beta >\pi \). Furthermore, we also prove that \({\mathscr {P}}\) defines a bounded operator \({\mathscr {P}}: W^{s,2}(d_b(D_\beta ),d\sigma )\rightarrow W^{s,2}(d_b(D_\beta ), d\sigma )\) if and only if \(0\le s<\textstyle {\frac{\nu _\beta }{2}}\) where \(W^{s.2}(d_b( D_\beta ), d\sigma )\) denotes the Sobolev space of order s and underlying \(L^2\)-norm. Finally, we prove a necessary condition for the boundedness of \({\mathscr {P}}\) on \(W^{s,p}(d_b(D_\beta ), d\sigma )\), \(p\in (1,\infty )\), the Sobolev space of order s and underlying \(L^p\)-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, D.E.: Behavior of the Bergman projection on the Diederich–Fornæss worm. Acta Math. 168(1–2), 1–10 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Békollé, D., Bonami, A.: Estimates for the Bergman and Szegő projections in two symmetric domains of \({ C}^n\). Colloq. Math. 68(1), 81–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boas, H.P., Chen, S.-C., Straube, E.J.: Exact regularity of the Bergman and Szegő projections on domains with partially transverse symmetries. Manuscr. Math. 62(4), 467–475 (1988)

    Article  MATH  Google Scholar 

  4. Bell, S.R.: The Cauchy Transform, Potential Theory, and Conformal Mapping. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  5. Barrett, D.E., Ehsani, D., Peloso, M.M.: Regularity of projection operators attached to worm domains. Doc. Math. 20, 1207–1225 (2015)

    MATH  MathSciNet  Google Scholar 

  6. Barrett, D.E., Lee, L.: On the Szegő metric. J. Geom. Anal. 24(1), 104–117 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boas, H.P.: Regularity of the Szegő projection in weakly pseudoconvex domains. Indiana Univ. Math. J. 34(1), 217–223 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boas, H.P.: The Szegő projection: Sobolev estimates in regular domains. Trans. Am. Math. Soc. 300(1), 109–132 (1987)

    MATH  Google Scholar 

  9. Boas, H.P., Straube, E.J.: Complete Hartogs domains in \({\mathbf{C}}^2\) have regular Bergman and Szegő projections. Math. Z. 201(3), 441–454 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boas, H.P., Straube, E.J.: Sobolev estimates for the complex Green operator on a class of weakly pseudoconvex boundaries. Commun. Partial Differ. Equ. 16(10), 1573–1582 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barrett, D.E., Şahutoğlu, S.: Irregularity of the Bergman projection on worm domains in \({\mathbb{C}}^n\). Mich. Math. J. 61(1), 187–198 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Christ, M.: Global \(C^\infty \) irregularity of the \(\overline{\partial }\)-Neumann problem for worm domains. J. Am. Math. Soc. 9(4), 1171–1185 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cuckovic, Z., Şahutoğlu, S.: Essential norm estimates for the \(\bar{\partial }\)-neumann operator on convex domains and worm domains. ArXiv e-prints (2015)

  14. Diederich, K., Fornaess, J.E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225(3), 275–292 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, Translated and revised from the 1995 Spanish original by David Cruz-Uribe (2001)

  16. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  17. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  18. Harrington, P.S., Peloso, M.M., Raich, A.S.: Regularity equivalence of the Szegö projection and the complex Green operator. Proc. Am. Math. Soc. 143(1), 353–367 (2015)

    Article  MATH  Google Scholar 

  19. Krantz, S.G., Peloso, M.M.: Analysis and geometry on worm domains. J. Geom. Anal. 18(2), 478–510 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krantz, S.G., Peloso, M.M.: The Bergman kernel and projection on non-smooth worm domains. Houst. J. Math. 34(3), 873–950 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Krantz, S.G., Peloso, M.M., Stoppato, C.: Completeness on the worm domain and the Müntz-Szász problem for the Bergman space. ArXiv e-prints (2015)

  22. Krantz, S.G., Peloso, M.M., Stoppato, C.: Bergman kernel and projection on the unbounded Diederich–Fornæss worm domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(4), 1153–1183 (2016)

    MATH  MathSciNet  Google Scholar 

  23. Lanzani, L., Stein, E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lanzani, L., Stein, E.M.: Hardy spaces of holomorphic functions for domains in \({\mathbb{C}}^n\) with minimal smoothness. In: Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory. Vol. 1, Assoc. Women Math. Ser., vol. 4, pp. 179–199, Springer, [Cham] (2016)

  25. Lanzani, L., Stein, E.M.: The Cauchy–Szegő projection for domains in \({\mathbb{C}}^n\) with minimal smoothness. Duke Math. J. 166(1), 125–176 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  26. Monguzzi, A.: A comparison between the Bergman and Szegö kernels of the non-smooth worm domain \(D^{\prime }_\beta \). Complex Anal. Oper. Theory 10(5), 1017–1043 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Monguzzi, A.: Hardy spaces and the Szegő projection of the non-smooth worm domain \(D^{\prime }_\beta \). J. Math. Anal. Appl. 436(1), 439–466 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Monguzzi, A.: On Hardy spaces on worm domains. Concr. Oper. 3, 29–42 (2016)

    MATH  MathSciNet  Google Scholar 

  29. Monguzzi, A., Peloso, M.M.: Regularity of the Szegö projection on model worm domains. Complex Var. Elliptic Equ. 62(9), 1287–1313 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  30. McNeal, J.D., Stein, E.M.: The Szegő projection on convex domains. Math. Z. 224(4), 519–553 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Munasinghe, S., Zeytuncu, Y.E.: Irregularity of the Szegö projection on bounded pseudoconvex domains in \({\mathbb{C}}^2\). Integral Equ. Oper. Theory 82(3), 417–422 (2015)

    Article  MATH  Google Scholar 

  32. Nagel, A., Rosay, J.-P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegő kernels in \({\bf C}^2\). Ann. Math. (2) 129(1), 113–149 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rooney, P.G.: A survey of Mellin multipliers, Fractional calculus (Glasgow, 1984), Res. Notes in Math., vol. 138, pp. 176–187. Pitman, Boston, MA (1984)

  35. Sedleckiĭ, A.M.: An equivalent definition of the \(H^{p}\) spaces in the half-plane, and some applications. Mat. Sb. (N.S.) 96(138), 75–82, 167 (1975)

    MATH  MathSciNet  Google Scholar 

  36. Stein, E.M.: Boundary values of holomorphic functions. Bull. Am. Math. Soc. 76, 1292–1296 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  37. Straube, E.J.: Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains. Math. Z. 192(1), 117–128 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  38. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Both authors supported in part by the 2010–2011 PRIN Grant Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis of the Italian Ministry of Education (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco M. Peloso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monguzzi, A., Peloso, M.M. Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains. Integr. Equ. Oper. Theory 89, 315–344 (2017). https://doi.org/10.1007/s00020-017-2405-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2405-7

Keywords

Mathematics Subject Classification

Navigation