Skip to main content
Log in

Finite Section Method in a Space with Two Norms

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We compare the finite central truncations of a given matrix with respect to two non-equivalent Hilbert space norms. While the limit sets of the finite sections spectra are merely located via numerical range bounds, the weak \(*\)-limits of the counting measures of these spectra are proven in general to be gravi-equivalent with respect to the logarithmic potential in the complex plane. Classical methods of factorization of Volterra type or Wiener–Hopf type operators lead to a series of effective criteria of asymptotic equivalence, or uniform boundedness of the two sequences of truncations. Examples from function theory, integral equations and potential theory complement the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Kang, H., Lee, H.: Layer Potential Techniques in Spectral Analysis. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  2. Arveson, W.: \(C^\ast \)-algebras and numerical linear algebra. J. Funct. Anal. 122, 333–360 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bari, N.K.: Biorthogonal systems and bases in a Hilbert space. Mosko. Gos. Univ. Ucen. Zap. Mat. 4, 69–107 (1951)

    MathSciNet  Google Scholar 

  4. Brown, N.: Quasi-diagonality and the finite section method. Math. Comput. 76, 339–360 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bötcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  Google Scholar 

  6. Davidson, K.: Nest Algebras, Pitman Research Notes in Mathematical Sciences, vol. 191. Longman Scientific and Technical, Harlow (1988)

    Google Scholar 

  7. Garza, L., Marcellan, F.: Orthogonal polynomials and perturbations on measures supported on the real line and on the unit circle. A matrix perspective. Expos. Math. 34, 287–326 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gohberg, I., Goldberg, S., Kaashoeck, M.A.: Classes of Linear Operators. Vol. II, Operator Theory: Advances and Applications, vol. 63. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  9. Gohberg, I., Krein, M.G.: Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space, vol. 18. American Mathematical Soc, Providence (1969)

    MATH  Google Scholar 

  10. Gohberg, I., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space, vol. 24. American Mathematical Soc, Providence (1970)

    MATH  Google Scholar 

  11. Gustafsson, B., Putinar, M., Shapiro, H.S.: Restriction operators, balayage and doubly orthogonal systems of analytic functions. J. Funct. Anal. 199, 332–378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gutknecht, M.H.: Changing the norm in conjugate gradient type algorithms. SIAM J. Numer. Anal. 30, 40–56 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Parfenov, O.: Asymptotics of the singular numbers of the embedding operators for certain classes of analytic functions. Mat. Sb. 4, 219–224 (1981). (in Russian)

    Google Scholar 

  14. Kang, H., Putinar, M.: Spectral permanence in a space with two norms. Rev. Mat. Iberoam. (to appear)

  15. Krein, M.G.: Compact linear operators on functional spaces with two norms. Integral Equ. Oper. Theory 30, 140–162 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liesen, J., Strakoš, Z.: Krylov Subspace Method. Oxford Sci. Publ, Oxford (2013)

    MATH  Google Scholar 

  17. Martinez, C., Pinar, M.A.: Asymptotic behavior of the Christoffel functions on the unit ball in the presence of a mass on the sphere. arXiv: 1705.10193

  18. Schmidt, P., Spitzer, F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand. 8, 15–38 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge Univ. Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  20. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  21. van Assche, W.: Compact Jacobi matrices: from Stiletjes to Krein and M(a,b). Ann. Fac. Sci. Toulouse Math. 195–215 (1996)

  22. Worobjow, J.W.: Die Momentenmethode in der Angewandten Mathematik. VEB Deutscher Verlag Wiss, Berlin (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Putinar.

Additional information

Don Sarason, in memoriam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putinar, M. Finite Section Method in a Space with Two Norms. Integr. Equ. Oper. Theory 89, 345–376 (2017). https://doi.org/10.1007/s00020-017-2404-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2404-8

Mathematics Subject Classification

Keywords

Navigation