Integral Equations and Operator Theory

, Volume 89, Issue 1, pp 111–124 | Cite as

Maximal Operator with Rough Kernel in Variable Musielak–Morrey–Orlicz type Spaces, Variable Herz Spaces and Grand Variable Lebesgue Spaces

Article
  • 72 Downloads

Abstract

In the frameworks of some non-standard function spaces (viz. Musielak–Orlicz spaces, generalized Orlicz–Morrey spaces, generalized variable Morrey spaces and variable Herz spaces) we prove the boundedness of the maximal operator with rough kernel. The results are new even for p constant.

Keywords

Rough operator Maximal operator Generalized Orlicz–Morrey spaces Generalized variable Morrey spaces Variable Herz spaces 

Mathematics Subject Classification

Primary 42B25 Secondary 46E30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Qassem, H., Al-Salman, A.: \(l^p\)-boundedness of a class of singular integral operators with rough kernels. Turk. J. Math. 25, 519–533 (2001)MathSciNetMATHGoogle Scholar
  2. 2.
    Al-Qassem, H., Cheng, L., Pan, Y.: On certain rough integral operators and extrapolation. J. Ineq. Pure Appl. Math. 10, 15 (2009)MathSciNetMATHGoogle Scholar
  3. 3.
    Al-Salman, A.: Rough oscillatory singular integral operators-II. Turk. J. Math. 27, 565–579 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Al-Salman, A.: Maximal operators with rough kernels on product domains. J. Math. Anal. Appl. 311(1), 338–351 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Al-Salman, A.: On a class of singular integral operators with rough kernels. Can. Math. Bull. 4(1), 3–10 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 18 (2015)CrossRefMATHGoogle Scholar
  7. 7.
    Chanillo, S., Watson, D., Wheeden, R.: Some integral and maximal operators related to starlike sets. Studia Math. 107(3), 223–255 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, L.-K., Lin, H.: A maximal operator related to a class of singular integrals. Ill. J. Math. 34(1), 296–321 (1990)MathSciNetGoogle Scholar
  9. 9.
    Ding, Y.: Weak type bounds for a class of rough operators with power weights. Proc. Am. Math. Soc. 125(10), 2939–2942 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ding, Y., Lin, C.-C.: A class of maximal operators with rough kernel on product spaces. Ill. J. Math. 45(2), 545–557 (2001)MathSciNetMATHGoogle Scholar
  11. 11.
    Ding, Y., Lu, S.: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50(1), 29–39 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Proc. Am. Math. Soc. 336(2), 869–880 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hu, G., Lu, S., Yang, D.: Boundedness of rough singular integral operators on homogeneous Herz spaces. J. Austral. Math. Soc. (Series A) 66(2), 201–223 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 261–274 (1971)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Sjögren, P., Soria, F.: Rough maximal functions and rough singular integral operators applied to integrable radial functions. Rev. Mat. Iberoam. 13(1), 691–701 (1997)MathSciNetMATHGoogle Scholar
  16. 16.
    Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey–Herz spaces. Hokkaido Math. J. 34(2), 299–314 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Balakishiyev, A.S., Guliyev, V.S., Gurbuz, F., Serbetci, A.: Sublinear operators with rough kernel generated by Calderón–Zygmund operators and their commutators on generalized local Morrey spaces. J. Inequal. Appl. 2015, 61 (2015)CrossRefMATHGoogle Scholar
  18. 18.
    Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)CrossRefMATHGoogle Scholar
  19. 19.
    Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334(9), 817–822 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)MATHGoogle Scholar
  22. 22.
    Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Aboulaich, R., Boujena, S., El Guarmah, E.: Sur un modèle non-linéaire pour le débruitage de l’image. C. R. Math. Acad. Sci. Paris 345(8), 425–429 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56(4), 874–882 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Blomgren, P., Chan, T., Mulet, P., Vese, L., Wan, W.: Variational PDE models and methods for image processing. In: Numerical analysis 1999. In: Proceedings of the 18th Dundee biennial conference, Univ. of Dundee, GB, June 29th–July 2nd, 1999, Boca Raton, FL: Chapman & Hall/ CRC, 2000, pp. 43–67Google Scholar
  26. 26.
    Bollt, E.M., Chartrand, R., Esedo\(\bar{\rm g}\)lu, S., Schultz, P., Vixie, K.R.: Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion. Adv. Comput. Math. 31(1–3), 61–85 (2009)Google Scholar
  27. 27.
    Chen, Y., Guo, W., Zeng, Q., Liu, Y.: A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Probl. Imaging 2(2), 205–224 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wunderli, T.: On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 364(2), 591–598 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Harjulehto, P., Hästö, P., Lê, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 72(12), 4551–4574 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. Praha 51(4), 355–425 (2006)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Cruz-Uribe, D .V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Birkhäuser/Springer, New York (2013)CrossRefMATHGoogle Scholar
  33. 33.
    Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  34. 34.
    Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Vol. 248 of Operator Theory: Advances and Applications, Birkhäuser Basel, (2016)Google Scholar
  35. 35.
    Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Vol. 249 of Operator Theory: Advances and Applications, (2016)Google Scholar
  36. 36.
    Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)MathSciNetMATHGoogle Scholar
  37. 37.
    Rafeiro, H., Samko, S.: On maximal and potential operators with rough kernels in variable exponent spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(3), 309–325 (2016)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)MATHGoogle Scholar
  39. 39.
    Berberian, S. K.: Lectures in functional analysis and operator theory. Springer, New York-Heidelberg, (1974), graduate Texts in Mathematics, No. 15Google Scholar
  40. 40.
    Kolmogoroff, A.: Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Stud. Math. 5, 29–33 (1934)CrossRefMATHGoogle Scholar
  41. 41.
    Hästö, P.A.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269(12), 4038–4048 (2015)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Hästö, P.A.: Corrigendum to The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 271(1), 240–243 (2016)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Guliyev, V.S., Hasanov, J.J., Samko, S.G.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107(2), 285–304 (2010)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Karapetyants, N.K., Samko, N.: Weighted theorems on fractional integrals in the generalized Hölder spaces via indices \(m_\omega \) and \(M_\omega \). Fract. Calc. Appl. Anal. 7(4), 437–458 (2004)MathSciNetMATHGoogle Scholar
  45. 45.
    Deringoz, F., Guliyev, V. S., Samko, S.: Boundedness of the maximal and singular operators on generalized Orlicz–Morrey spaces. In: Operator theory, operator algebras and applications. Selected papers based on the presentations at the workshop WOAT 2012, Lisbon, Portugal, September 11–14, 2012, Basel: Birkhäuser/Springer, 2014, pp. 139–158Google Scholar
  46. 46.
    Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137(1), 76–96 (2013)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Guliyev, V., Hasanov, J.J., Samko, S.G.: Maximal, potential and singular operators in the local complementary variable exponent Morrey type spaces. J. Math. Anal. Appl. 401(1), 72–84 (2013)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Samko, S.: Variable exponent Herz spaces. Mediterr. J. Math. 10(4), 2007–2025 (2013)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Rafeiro, H., Samko, S.: Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 288(4), 465–475 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  2. 2.Departamento de MatemáticaUniversidade do AlgarveFaroPortugal

Personalised recommendations