Skip to main content
Log in

On the Essential Spectrum of Quantum Graphs

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(\Gamma \subset \mathbb {R}^{n}\) be a graph periodic with respect to the action of a group \(\mathbb {G}\) isomorphic to \(\mathbb {Z}^{m},1\le m\le n. \) We consider a one-dimensional Schrödinger operator

$$\begin{aligned} S_{q}u(x)=\left( -\frac{d^{2}}{dx^{2}}+q(x)\right) u(x),u\in C_{0}^{\infty }(\Gamma \backslash \mathcal {V)},q\in L^{\infty }(\Gamma ) \end{aligned}$$

defined on the edges of the graph \(\Gamma \), where \(\mathcal {V}\) is the set of the vertices of \(\Gamma \). The operator \(S_{q}\) is extended to a closed unbounded operator \(\mathcal {H}_{q}\) in \(L^{2}(\Gamma )\) with domain \(\tilde{H} ^{2}(\Gamma )\) consisting of functions u belonging to the Sobolev space \(H^{2}(e)\) on the edges e of the graph \(\Gamma \) and satisfying the Kirchhoff–Neumann conditions at the vertices of \(\Gamma .\) For the unbounded operator \(\mathcal {H}_{q}\) we introduce a family \(Lim (\mathcal {H}_{q})\) of limit operators \(\mathcal {H}_{q}^{g}\) defined by the sequences \(\mathbb {G\ni }g_{m}\rightarrow \infty \) and prove that

$$\begin{aligned} sp_{ess}\mathcal {H}_{q}= {\displaystyle \bigcup \limits _{\mathcal {H}_{q}^{g}\in Lim(\mathcal {H}_{q})}} sp\mathcal {H}_{q}^{g}. \end{aligned}$$

We apply this result to the calculation of the essential spectra of self-adjoint Schrödinger operators with periodic potentials perturbed by terms slowly oscillating at infinity. We show that such perturbations significantly change the structure of the spectrum of Schrödinger operators with periodic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovich, M.S.: Elliptic operators on closed manifolds. In: Yu.v. Egorov, M.A. Shubin (eds.) Partial Differential Equations VI, Volume 63 of the Series Encyclopaedia of Mathematical Sciences, pp. 1–130 Springer-Verlag, Berlin, Heidelberg (1994)

  2. Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.): Quantum graphs and their applications. In: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Quantum Graphs and Their Applications, June 19–23, 2005, Snowbird, Utah. Contemporary Mathematics, Vol. 415. AMS, Providence (2006)

  3. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. AMS, Providence (2013)

    MATH  Google Scholar 

  4. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Spaces. D.Reidel Publishing Company, Dordrecht (1986)

    Book  Google Scholar 

  5. Do, N.: On the quantum graph spectra of graphyne nanotubes. Anal. Math. Phys. 5, 39–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Do, N.T., Kuchment, P.: Quantum graph spectra of a graphyne structure. Nanoscale Syst. Math. Model. Theory Appl. 2, 107–123 (2013)

    MATH  Google Scholar 

  7. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on graphs and its applications. In: Proceedings of Symposia in Pure Mathematics, Vol. 77. AMS, Providence (2008)

  8. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press Ltd., London (1973)

    MATH  Google Scholar 

  9. Feferman, C.L., Weinstein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuchment, P.: Quantum graphs: I. Some basic structures. Waves Random Media 14, S107–S128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuchment, P.: Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A Math. Gen. 38, 4887–4900 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuchment, P., Post, O.: On the spectra carbon nano-structures. Commun. Math. Phys. 275(3), 805–826 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuchment, P., Kuniansky, A.: Spectral properties of high contrast band-gap materials and operators on graphs. Exp. Math. 8(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  14. Kuchment, P., Vainberg, B.: On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators. Commun. Math. Phys. 268(3), 673–686 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Korotyaev, E., Lobanov, I.: Schrödinger operators on zig-zag nano-tubes. Ann. Henri Puancaré 8(6), 1151–1176 (2007)

    Article  MATH  Google Scholar 

  16. Korotyaev, E., Saburova, N.: Scattering on periodic metric graphs. ArXiv:1507.06441v1 [math.SP](2015)

  17. Lindner, M., Seidel, M.: An affirmative answer to a core issue on limit operators. J. Funct. Anal. 267(3), 901–917 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pankrashkin, K.: Spectra of Schrödinger operators on equilateral quantum graphs. Lett. Math. Phys. 77(2), 139–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Post, O.: Equilateral quantum graphs and boundary triples. ArXiv:0712.1501v2 [math-ph] (2008)

  20. Rabinovich, V.S., Roch, S., Silbermann, B.: Limit operators and its applications in the operator theory. In: Operator Theory: Advances and Applications, Vol. 150. ISBN 3-7643-7081-5. Birkhäuser Verlag (2004)

  21. Rabinovich, V.S., Roch, S., Silbermann, B.: Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections. Integral Equ. Oper. Theory 40, 342–381 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabinovich, V.S.: Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein–Gordon, and Dirac operators. Russ. J. Math. Phys. 12(1), 62–80 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Rabinovich, V.S., Roch, S.: The essential spectrum of Schrödinger operators on lattices. J. Phys. A Math. Theor. 39, 8377–8394 (2006)

    MATH  Google Scholar 

  24. Rabinovich, V.S., Roch, S.: Essential spectra of difference operators on \({\mathbb{Z}}^{n}\)-periodic graphs. J. Phys. A Math. Theor. 40, 10109–10128 (2007). ISSN 1751-8113

    Article  MathSciNet  MATH  Google Scholar 

  25. Rabinovich, V.S., Castillo-Pérez, R., Urbano-Altamirano, F.: On the essential spectrum of quantum waveguides. Math. Methods Appl. Sci. 36(7), 761–772 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Talmage, A.: Computing of the dispersion relations of periodic quantum graphs. (http://openscholarship.wustl.edu/wushta_spr2015/121) (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Rabinovich.

Additional information

This work is partially supported by the National System of Investigators of Mexico (SNI), and the Conacyt Project SB-179872.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinovich, V. On the Essential Spectrum of Quantum Graphs. Integr. Equ. Oper. Theory 88, 339–362 (2017). https://doi.org/10.1007/s00020-017-2386-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2386-6

Keywords

Mathematics Subject Classification

Navigation