Skip to main content
Log in

Converging Expansions for Lipschitz Self-Similar Perforations of a Plane Sector

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In contrast with the well-known methods of matching asymptotics and multiscale (or compound) asymptotics, the “functional analytic approach” of Lanza de Cristoforis (Analysis (Munich) 28:63–93, 2008) allows to prove convergence of expansions around interior small holes of size \(\varepsilon \) for solutions of elliptic boundary value problems. Using the method of layer potentials, the asymptotic behavior of the solution as \(\varepsilon \) tends to zero is described not only by asymptotic series in powers of \(\varepsilon \), but by convergent power series. Here we use this method to investigate the Dirichlet problem for the Laplace operator where holes are collapsing at a polygonal corner of opening \(\omega \). Then in addition to the scale \(\varepsilon \) there appears the scale \(\eta =\varepsilon ^{\pi /\omega }\). We prove that when \(\pi /\omega \) is irrational, the solution of the Dirichlet problem is given by convergent series in powers of these two small parameters. Due to interference of the two scales, this convergence is obtained, in full generality, by grouping together integer powers of the two scales that are very close to each other. Nevertheless, there exists a dense subset of openings \(\omega \) (characterized by Diophantine approximation properties), for which real analyticity in the two variables \(\varepsilon \) and \(\eta \) holds and the power series converge unconditionally. When \(\pi /\omega \) is rational, the series are unconditionally convergent, but contain terms in \(\log \varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammari, H., Kang, H.: Polarization and Moment Tensors, Vol. 162 of Applied Mathematical Sciences. Springer, New York (2007). (With applications to inverse problems and effective medium theory)

    Google Scholar 

  2. Bergamasco, A.P.: Remarks about global analytic hypoellipticity. Trans. Am. Math. Soc. 351, 4113–4126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnaillie-Noël, V., Dalla Riva, M., Dambrine, M., Musolino, P.: A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary. Preprint. arXiv:1612.04637 (2016)

  4. Brahimi, M., Dauge, M.: Analyticité et problèmes aux limites dans un polygone. C. R. Acad. Sci. Paris Sér. I Math. 294, 9–12 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabel, M., Dauge, M.: Construction of corner singularities for Agmon–Douglis–Nirenberg elliptic systems. Math. Nachr. 162, 209–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabel, M., Dauge, M.: Stable asymptotics for elliptic systems on plane domains with corners. Commun. Partial Differ. Equ. 9–10, 1677–1726 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M., Wendland, W.L.: Strong ellipticity of boundary integral operators. J. Reine Angew. Math. 372, 34–63 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Dalla Riva, M., Musolino, P.: Real analytic families of harmonic functions in a planar domain with a small hole. J. Math. Anal. Appl. 422, 37–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dalla Riva, M., Musolino, P.: A mixed problem for the Laplace operator in a domain with moderately close holes. Commun. Partial Differ. Equ. 41, 812–837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dauge, M.: Second membre analytique pour un problème aux limites elliptique d’ordre \(2m\) sur un polygone. Commun. Partial Differ. Equ. 9, 169–195 (1984)

    Article  MATH  Google Scholar 

  12. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains—Smoothness and Asymptotics of Solutions, Vol. 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  13. Dauge, M., Tordeux, S., Vial, G.: Selfsimilar perturbation near a corner: matching versus multiscale expansions for a model problem. Around the Research of Vladimir Maz’ya. II, Vol. 12 of Int. Math. Ser. (N. Y.), pp. 95–134. Springer, New York (2010)

  14. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  15. Greenfield, S.J., Wallach, N.R.: Global hypoellipticity and Liouville numbers. Proc. Am. Math. Soc. 31, 112–114 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008). (Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles)

    MATH  Google Scholar 

  17. Himonas, A.A.: Global analytic and Gevrey hypoellipticity of sublaplacians under Diophantine conditions. Proc. Am. Math. Soc. 129, 2061–2067 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Il’in, A.M.: Matching of asymptotic expansions of solutions of boundary value problems, vol. 102 of Translations of Mathematical Monographs, American Mathematical Society, Providence 1992. Translated from the Russian by V. Minachin [V. V. Minakhin]

  19. Kondrat’ev, V.A.: Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Kozlov, V., Maz’ya, V., Movchan, A.: Asymptotic Analysis of Fields in Multi-structures, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1999)

  21. Lanza de Cristoforis, M.: Asymptotic behaviour of the conformal representation of a Jordan domain with a small hole in Schauder spaces. Comput. Methods Funct. Theory 2, 1–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lanza de Cristoforis, M.: Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Analysis (Munich) 28, 63–93 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Lanza de Cristoforis, M., Musolino, P.: A real analyticity result for a nonlinear integral operator. J. Integral Equ. Appl. 25, 21–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mayboroda, S., Mitrea, M.: Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces. Ann. Mat. Pura Appl. (4) 185, 155–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maz’ya, V., Nazarov, S., Plamenevskij, B.: Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vols. I, II, vol. 111, 112 of Operator Theory: Advances and Applications. Birkhäuser, Basel (2000)

  26. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Morrey Jr., C.B., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial differential equations. Commun. Pure Appl. Math. 10, 271–290 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262, 733–748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Costabel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costabel, M., Dalla Riva, M., Dauge, M. et al. Converging Expansions for Lipschitz Self-Similar Perforations of a Plane Sector. Integr. Equ. Oper. Theory 88, 401–449 (2017). https://doi.org/10.1007/s00020-017-2377-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2377-7

Mathematics Subject Classification

Keywords

Navigation