Abstract
We study optimization of quasi-normal-eigenvalues \(\omega \) associated with the equation \(y^{\prime \prime } = -\omega ^2 B y \) of two-side open optical and mechanical resonators. The coefficient B(x) is assumed to satisfy the side constraints \(b_1(x) \le B(x) \le b_2 (x)\) and is subjected to modifications with the aim to move a particular quasi-(normal-)eigenvalue closer to the real line. The existence of various optimizers is rigorously proved including the existence of local minimizers for the decay rate in the case of low contrast. We show that locally extremal quasi-eigenvalues belong to the spectrum \(\Sigma ^\mathrm {nl}\) of the bang-bang eigenproblem \(y^{\prime \prime } = - \omega ^2 y [ b_1 + (b_2 - b_1) \chi _{_{\scriptstyle \mathbb C_+}}(y^2 ) ]\) (here \(\chi _{_{\scriptstyle \mathbb C_+}}(\cdot )\) is the indicator function of the upper complex half-plane \(\mathbb C_+\)). To achieve this a variational characterization of \(\Sigma ^\mathrm {nl}\) is obtained in terms of quasi-eigenvalue perturbations. To address the minimization of the decay rate \(| {{\mathrm{Im}}}\omega |\) for a fixed frequency \({{\mathrm{Re}}}\omega \), we develop and rigorously justify a new numerical method based on the above nonlinear equation. This approach excludes an infinite-dimensional unknown \(B (\cdot )\) from the optimization process. In a numerical experiment, we compute some of quasi-eigenvalues of minimal decay and compare one of associated structures with recently introduced designs of high quality-factor cavities.
This is a preview of subscription content, access via your institution.
References
Albeverio, S., Høegh-Krohn, R.: Perturbation of resonances in quantum mechanics. J. Math. Anal. Appl. 101, 491–513 (1984)
Albeverio, S., Karabash, I.M.: Resonance Free Regions and Non-Hermitian Spectral Optimization for Schrödinger Point Interactions (submitted)
Burger, S., Pomplun, J., Schmidt, F., Zschiedrich, L.: Finite-element method simulations of high-Q nanocavities with 1D photonic bandgap. In: Proceedings of the SPIE, Vol. 7933, p. 79330T (Physics and Simulation of Optoelectronic Devices XIX) (2011)
Burke, J.V., Lewis, A.S., Overton, M.L.: Optimal stability and eigenvalue multiplicity. Found. Comput. Math. 1(2), 205–225 (2001)
Cox, S.J., Overton, M.L.: Perturbing the critically damped wave equation. SIAM J. Appl. Math. 56(5), 1353–1362 (1996)
Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19(1–2), 213–243 (1994)
Cox, S., Zuazua, E.: The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44(2), 545–573 (1995)
Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)
Dobson, D.C., Santosa, F., Shipman, S.P., Weinstein, M.I.: Resonances of a potential well with a thick barrier. SIAM J. Appl. Math. 73(4), 1489–1512 (2013)
Egorov, Y.V., Kondrat’ev, V.A.: Estimates for the first eigenvalue in some Sturm–Liouville problems. Russ. Math. Surv. 51(3), 439–508 (1996)
Froese, R.: Asymptotic distribution of resonances in one dimension. J. Differ. Equ. 137(2), 251–272 (1997)
Gu, Y., Cheng, X.: A numerical approach for defect modes localization in an inhomogeneous medium. SIAM J. Appl. Math. 73(6), 2188–2202 (2013)
Gubreev, G.M., Pivovarchik, V.N.: Spectral analysis of the Regge problem with parameters. Funct. Anal. Appl. 31(1), 54–57 (1997)
Harrell, E.M.: General lower bounds for resonances in one dimension. Commun. Math. Phys. 86(2), 221–225 (1982)
Harrell, E.M., Svirsky, R.: Potentials producing maximally sharp resonances. Trans. Am. Math. Soc. 293(2), 723–736 (1986)
Heider, P., Berebichez, D., Kohn, R.V., Weinstein, M.I.: Optimization of scattering resonances. Struct. Multidiscip. Optim. 36, 443–456 (2008)
Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)
Kao, C.-Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45, 412–427 (2008)
Karabash, I.M.: Optimization of quasi-normal eigenvalues for Krein–Nudelman strings. Integral Equ. Oper. Theory 75(2), 235–247 (2013)
Karabash, I.M.: Optimization of quasi-normal eigenvalues for 1-D wave equations in inhomogeneous media; description of optimal structures. Asymptot. Anal. 81(3–4), 273–295 (2013)
Karabash, I.M.: Nonlinear eigenvalue problem for optimal resonances in optical cavities. Math. Model. Nat. Phenom. 8(1), 143–155 (2013)
Karabash, I.M.: Pareto optimal structures producing resonances of minimal decay under \(L^1\)-type constraints. J. Differ. Equ. 257(2), 374–414 (2014)
Krein, M.G., Nudelman, A.A.: Some spectral properties of a nonhomogeneous string with a dissipative boundary condition. J. Oper. Theory 22, 369–395 (1989) (Russian)
Kuramochi, E., Taniyama, H., Tanabe, T., Kawasaki, K., Roh, Y.G., Notomi, M.: Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on \({\rm SiO}_2\) claddings and on air claddings. Opt. Express 18(15), 15859–15869 (2010)
Lax, P.D., Phillips, R.S.: A logarithmic bound on the location of the poles of the scattering matrix. Arch. Ration. Mech. Anal. 40(4), 268–280 (1971)
Liang, X., Johnson, S.G.: Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express 21(25), 30812–30841 (2013)
Maassen van den Brink, A., Young, K.: Jordan blocks and generalized bi-orthogonal bases: realizations in open wave systems. J. Phys. A 34(12), 2607–2624 (2001)
Maes, B., Petráček, J., Burger, S., Kwiecien, P., Luksch, J., Richter, I.: Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt. Express 21(6), 6794–6806 (2013)
Maksimovic, M., Hammer, M., van Groesen, E.: Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes. Opt. Commun. 281(6), 1401–1411 (2008)
Notomi, M., Kuramochi, E., Taniyama, H.: Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 16(15), 11095–11102 (2008)
Osting, B., Weinstein, M.I.: Long-lived scattering resonances and Bragg structures. SIAM J. Appl. Math. 73(2), 827–852 (2013)
Pfeiffer, F., Mennicke, U., Salditt, T.: Waveguide-enhanced scattering from thin biomolecular films. J. Appl. Crystallogr. 35(2), 163–167 (2002)
Pivovarchik, V.N.: Inverse problem for a smooth string with damping at one end. J. Oper. Theory 38(2), 243–263 (1997)
Pivovarchik, V., van der Mee, C.: The inverse generalized Regge problem. Inverse Probl. 17(6), 1831–1845 (2001)
Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)
Schenk, F.: Optimization of Resonances for Multilayer X-ray Resonators. Universitätsverlag Göttingen, Göttingen (2011)
Settimi, A., Severini, S., Hoenders, B.J.: Quasi-normal-modes description of transmission properties for photonic bandgap structures. J. Opt. Soc. Am. B 26, 876–891 (2009)
Shubov, M.A.: Spectral operators generated by damped hyperbolic equations. Integral Equ. Oper. Theory 28(3), 358–372 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
During various parts of this research, IK and IV were supported by the EU-financed projects AMMODIT (Grant Agreement MSCA-RISE-2014-645672-AMMODIT) and EUMLS (Marie Curie Actions—International Research Staff Exchange Scheme FP7-People-2011-IRSES, Project Number 295164), IK was supported by the Alexander von Humboldt Foundation, by Hausdorff Trimester Program “Mathematics of Signal Processing” at Hausdorff Research Institute for Mathematics, and by the Project No. 15-1vv\19 of Donetsk National University.
Rights and permissions
About this article
Cite this article
Karabash, I.M., Logachova, O.M. & Verbytskyi, I.V. Nonlinear Bang–Bang Eigenproblems and Optimization of Resonances in Layered Cavities. Integr. Equ. Oper. Theory 88, 15–44 (2017). https://doi.org/10.1007/s00020-017-2368-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00020-017-2368-8