Alaifari, R., Pierce, L.B., Steinerberger, S.: Lower bounds on the truncated Hilbert transform. Rev. Matematica Iberoam. 32(1), 23–56 (2016)
MathSciNet
Article
MATH
Google Scholar
Amrein, W., Berthier, A.M.: On support properties of Lp-functions and their Fourier transforms. J. Funct. Anal. 24(3), 258–267 (1977)
Article
MATH
Google Scholar
Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985)
MathSciNet
Article
MATH
Google Scholar
Bertero, M., Grünbaum, F.A.: Commuting differential operators for the finite Laplace transform. Inverse Probl. 1(3), 181 (1985)
MathSciNet
Article
MATH
Google Scholar
Fuchs, W.: On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math. Anal. Appl. 9, 317–330 (1964)
MathSciNet
Article
MATH
Google Scholar
Jaming, P., Pozzi, E., Wick, B.D.: Lower bounds for the dyadic Hilbert transform. Ann. Fac. Sci. Toulouse Math. (to appear)
Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 6584 (1961)
MathSciNet
Article
MATH
Google Scholar
Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)
Article
MATH
Google Scholar
Lederman, R.R.: On the Analytical and Numerical Properties of the Truncated Laplace Transform, Technical Report TR1490, Yale (2014)
Lederman, R.R., Rokhlin, V.: On the analytical and numerical properties of the truncated Laplace transform I. SIAM J. Numer. Anal. 53(3), 1214–1235 (2015)
MathSciNet
Article
MATH
Google Scholar
Lederman, R.R., Rokhlin, V.: On the analytical and numerical properties of the truncated Laplace transform. Part II. SIAM J. Numer. Anal. 54(2), 665–687 (2016)
Lederman, R.R.: On the analytical and numerical properties of the truncated Laplace transform III (in preparation)
Nazarov, F.: Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. Algebra i Analiz 5 (1993), no. 4, 3–66; translation in St. Petersburg Math. J. 5 , no. 4, 663–717 (1994)
Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation. Appl. Math. Sci. 187, xii+379 (2013)
MATH
Google Scholar
Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)
MathSciNet
Article
MATH
Google Scholar
Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, 3009–3057 (1964)
MathSciNet
Article
MATH
Google Scholar
Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)
MathSciNet
Article
MATH
Google Scholar
Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964)
MathSciNet
MATH
Google Scholar