Skip to main content

Lower Bounds for Truncated Fourier and Laplace Transforms

Abstract

We prove sharp stability estimates for the Truncated Laplace Transform and Truncated Fourier Transform. The argument combines an approach recently introduced by Alaifari, Pierce and the second author for the truncated Hilbert transform with classical results of Bertero, Grünbaum, Landau, Pollak and Slepian. In particular, we prove there is a universal constant \(c >0\) such that for all \(f \in L^2(\mathbb {R})\) with compact support in \([-1,1]\) and normalized to \(\Vert f\Vert _{L^2[-1,1]} = 1\)

$$\begin{aligned} \int _{-1}^{1}{|{\widehat{f}}(\xi )|^2d\xi } \gtrsim \left( c\left\| f_x \right\| _{L^2[-1,1]} \right) ^{- c\left\| f_x \right\| _{L^2[-1,1]}} \end{aligned}$$

The inequality is sharp in the sense that there is an infinite sequence of orthonormal counterexamples if c is chosen too small. The question whether and to which extent similar inequalities hold for generic families of integral operators remains open.

This is a preview of subscription content, access via your institution.

References

  1. Alaifari, R., Pierce, L.B., Steinerberger, S.: Lower bounds on the truncated Hilbert transform. Rev. Matematica Iberoam. 32(1), 23–56 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  2. Amrein, W., Berthier, A.M.: On support properties of Lp-functions and their Fourier transforms. J. Funct. Anal. 24(3), 258–267 (1977)

    Article  MATH  Google Scholar 

  3. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  4. Bertero, M., Grünbaum, F.A.: Commuting differential operators for the finite Laplace transform. Inverse Probl. 1(3), 181 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  5. Fuchs, W.: On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math. Anal. Appl. 9, 317–330 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  6. Jaming, P., Pozzi, E., Wick, B.D.: Lower bounds for the dyadic Hilbert transform. Ann. Fac. Sci. Toulouse Math. (to appear)

  7. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 6584 (1961)

    MathSciNet  Article  MATH  Google Scholar 

  8. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    Article  MATH  Google Scholar 

  9. Lederman, R.R.: On the Analytical and Numerical Properties of the Truncated Laplace Transform, Technical Report TR1490, Yale (2014)

  10. Lederman, R.R., Rokhlin, V.: On the analytical and numerical properties of the truncated Laplace transform I. SIAM J. Numer. Anal. 53(3), 1214–1235 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  11. Lederman, R.R., Rokhlin, V.: On the analytical and numerical properties of the truncated Laplace transform. Part II. SIAM J. Numer. Anal. 54(2), 665–687 (2016)

  12. Lederman, R.R.: On the analytical and numerical properties of the truncated Laplace transform III (in preparation)

  13. Nazarov, F.: Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type. Algebra i Analiz 5 (1993), no. 4, 3–66; translation in St. Petersburg Math. J. 5 , no. 4, 663–717 (1994)

  14. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximation. Appl. Math. Sci. 187, xii+379 (2013)

    MATH  Google Scholar 

  15. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  Article  MATH  Google Scholar 

  16. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, 3009–3057 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  17. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  18. Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lederman, R.R., Steinerberger, S. Lower Bounds for Truncated Fourier and Laplace Transforms. Integr. Equ. Oper. Theory 87, 529–543 (2017). https://doi.org/10.1007/s00020-017-2364-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2364-z

Mathematics Subject Classification

  • Primary 44A15
  • Secondary 45A05
  • 45Q05

Keywords

  • Truncated Laplace transform
  • Truncated Fourier transform
  • Stability estimates
  • Slepian’s ‘happy miracle’