Skip to main content
Log in

Products of Idempotent Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The goal of this article is to study the set of all products EF with EF idempotent operators defined on a Hilbert space. We present characterizations of this set in terms of operator ranges, Hilbert space decompositions and generalized inverses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana, J., Arias, M.L., Corach, G.: On some factorizations of operators. Linear Algebra Appl. 515, 226–245 (2017)

  2. Antezana, J., Corach, G., Stojanoff, D.: Bilateral shorted operators and parallel sums. Linear Algebra Appl. 414, 570–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arias, M.L., Corach, G., Gonzalez, M.C.: Generalized inverses and Douglas equations. Proc. Am. Math. Soc. 136, 3177–3183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arias, M.L., Corach, G., Gonzalez, M.C.: Products of projections and positive operators. Linear Algebra Appl. 439, 1730–1741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arias, M.L., Corach, G., Maestripieri, A.: Range additivity, shorted operator and the Sherman–Morrison–Woodbury formula. Linear Algebra Appl. 467, 86–99 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ballantine, C.S.: Products of idempotent matrices. Linear Algebra Appl. 19, 81–86 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Theory and Applications, 2nd ed. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15. Springer, New York (2003)

  8. Corach, G., Gonzalez, M.C., Maestripieri, A.: Unbounded symmetrizable idempotents. Linear Algebra Appl. 437, 659–674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corach, G., Maestripieri, A.: Products of orthogonal projections and polar decompositions. Linear Algebra Appl. 434, 1594–1609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawlings, R.J.H.: The idempotent generated subsemigroup of the semigroup of continuous endomorphisms of a separable Hilbert space. Proc. R. Soc. Edinb. 94A, 351–360 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deutsch, F.: The angles between subspaces of a Hilbert space. In: Singh, S.P. (ed.) Approximation Theory, Wavelets and Applications, pp. 107–130. Kluwer, Dordrecht (1995)

    Chapter  Google Scholar 

  12. Drivaliaris, D., Yannakakis, N.: Subspaces with a common complement in a separable Hilbert space. Integral Equ. Oper. Theory 62, 159–167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Douglas, R.G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–416 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engl, H.W., Nashed, M.Z.: New extremal characterizations of generalized inverses of linear operators. J. Math. Anal. Appl. 82(2), 566–586 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giol, J.: Segments of bounded linear idempotents on a Hilbert space. J. Funct. Anal. 229, 405–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Greville, T.N.E.: Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors. SIAM J. Appl. Math. 26, 828–832 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holub, J.R.: Wiener–Hopf operators and projections II. Math. Jpn. 25, 251–253 (1980)

    MathSciNet  MATH  Google Scholar 

  18. Kuo, K.H., Wu, P.Y.: Factorization of matrices into partial isometries. Proc. Am. Math. Soc. 105, 263–272 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lauzon, M., Treil, S.: Common complements of two subspaces of a Hilbert space. J. Funct. Anal. 212, 500–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ota, S.: Unbounded nilpotents and idempotents. J. Math. Anal. Appl. 132, 300–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Radjavi, H., Williams, J.P.: Products of self-adjoint operators. Mich. Math. J. 16, 177–185 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, P.Y.: The operator factorization problems. Linear Algebra Appl. 117, 35–63 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Arias.

Additional information

M. L. Arias and G. Corach are partially supported by CONICET (PIP 11220120100426), UBACYT 20020130100637 and FONCYT (PICT 2014-1776). A. Maestripieri is supported by CONICET (PIP 168-2014-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, M.L., Corach, G. & Maestripieri, A. Products of Idempotent Operators. Integr. Equ. Oper. Theory 88, 269–286 (2017). https://doi.org/10.1007/s00020-017-2363-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2363-0

Keywords

Mathematics Subject Classification

Navigation