Skip to main content
Log in

Ultracontractivity and Eigenvalues: Weyl’s Law for the Dirichlet-to-Neumann Operator

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We show an interesting relation between ultracontractivity and Weyl asymptotics. Then both properties are studied for their behaviour with respect to perturbation. The results are used to establish Weyl’s law for the Dirichlet-to-Neumann operator associated with \(-\Delta + V\), where V is a measurable bounded potential. In particular, we show that its eigenvalues determine the surface area of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W.: Lineare Funktionalanalysis, 6th edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  2. Arendt, W.: Gaussian estimates and interpolation of the spectrum in \(L^p\). Differ. Int. Equ. 7, 1153–1168 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Dafermos, C.M., Feireisl, E. (eds.) Evolutionary Equations. Vol. I, Handbook of Differential Equations, pp. 1–85. North-Holland, Amsterdam (2004)

    Google Scholar 

  4. Arendt, W.: Heat Kernels. Internet Seminar (2006). http://tulka.mathematik.uni-ulm.de/2005/lectures/internetseminar

  5. Arendt, W., ter Elst, A.F.M.: Gaussian estimates for second order elliptic operators with boundary conditions. J. Oper. Theory 38, 87–130 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67, 33–72 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Arendt, W., ter Elst, A.F.M., Kennedy, J.B., Sauter, M.: The Dirichlet-to-Neumann operator via hidden compactness. J. Funct. Anal. 266, 1757–1786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s law: spectral properties of the Laplacian in mathematics and physics. In: Arendt, W., Schleich, W.P. (eds.) Mathematical Analysis of Evolution, Information, and Complexity, pp. 1–71. Wiley, Weinheim (2009)

  9. Behrndt, J., ter Elst, A.F.M.: Dirichlet-to-Neumann maps on bounded Lip-schitz domains. J. Differ. Eq. 259, 5903–5926 (2015)

    Article  MATH  Google Scholar 

  10. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Desch, W., Schappacher, W.: Some perturbation results for analytic semigroups. Math. Ann. 281, 157–162 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. ter Elst, A.F.M., Lemańczyk, M.: On one-parameter Koopman groups. Ergod. Theory Dynam. Syst. (2015). doi:10.1017/etds.2015.111

  13. ter Elst, A.F.M., Ouhabaz, E.-M.: Analysis of the heat kernel of the Dirichlet-to-Neumann operator. J. Funct. Anal. 267, 4066–4109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. ter Elst, A.F.M., Ouhabaz, E.-M.: Poisson bounds for the Dirichlet-to-Neumann operator on a \(C^{1+\kappa }\)-domain (2017) (in preparation)

  15. Gesztesy, F., Mitrea, M.: Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In Perspectives in partial differential equations, harmonic analysis and applications. In: Proceedings Symposium Pure Mathematics, vol. 79, pp. 105–173. American Mathematical Society, Providence, RI (2008)

  16. Gimperlein, H., Grubb, G.: Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators. J. Evol. Equ. 14, 49–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985)

    MATH  Google Scholar 

  18. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karamata, J.: Neuer beweis und verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen. J. Reine Angew. Math. 164, 27–39 (1931)

    MathSciNet  MATH  Google Scholar 

  20. Koz̆evnikov, A.N.: Spectral problems for pseudodifferential systems elliptic in the Douglis–Nirenberg sense, and their applications. Math. USSR Sbornik 21, 63–90 (1973)

    Article  Google Scholar 

  21. Kunstmann, P.C., Vogt, H.: Weighted norm estimates and \(L_p\)-spectral independence of linear operators. Colloq. Math. 109, 129–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Corrected 2nd printing edition, Springer Monographs in Mathematics. Springer, Berlin (2012)

    Google Scholar 

  23. Netrusov, Y., Safarov, Y.: Weyl asymptotic formula for the Laplacian on domains with rough boundaries. Commun. Math. Phys. 253, 481–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nittka, R.: Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differ. Equ. 251, 860–880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ouhabaz, E.-M.: Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

    Google Scholar 

  26. Rosenberg, S.: The Laplacian on a Riemannian Manifold. London Mathematical Society Student Texts, vol. 31. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  27. Sandgren, L.: A vibration problem. Medd. Lunds Univ. Mat. Sem. 13, 1–84 (1955)

    MathSciNet  MATH  Google Scholar 

  28. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  29. Taylor, T.E.: Partial Differential Equations. II. Qualitative Studies Of Linear Equations. vol 116 of Applied Mathematical Sciences. Springer, New York (1996)

    Google Scholar 

  30. Voigt, J.: One-parameter semigroups acting simultaneously on different \(L_p\)-spaces. Bull. Soc. R. Sci. Liège 61, 465–470 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. M. ter Elst.

Additional information

Part of this work is supported by an NZ-EU IRSES counterpart fund and the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. Part of this work is supported by the EU Marie Curie IRSES program, Project ‘AOS’, No. 318910.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, W., ter Elst, A.F.M. Ultracontractivity and Eigenvalues: Weyl’s Law for the Dirichlet-to-Neumann Operator. Integr. Equ. Oper. Theory 88, 65–89 (2017). https://doi.org/10.1007/s00020-017-2353-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2353-2

Mathematics Subject Classification

Keywords

Navigation