Weak Product Spaces of Dirichlet Series


Let \({\mathscr{H}^2}\) denote the space of ordinary Dirichlet series with square summable coefficients, and let \({\mathscr{H}^{2}_{0}}\) denote its subspace consisting of series vanishing at \({+\infty}\). We investigate the weak product spaces \({\mathscr{H}^{2} \odot \mathscr{H}^{2}}\) and \({\mathscr{H}^{2}_{0} \odot \mathscr{H}^{2}_{0}}\), finding that several pertinent problems are more tractable for the latter space. This surprising phenomenon is related to the fact that \({\mathscr{H}^{2}_{0} \odot \mathscr{H}^{2}_{0}}\) does not contain the infinite-dimensional subspace of \({\mathscr{H}^2}\) of series which lift to linear functions on the infinite polydisc. The problems considered stem from questions about the dual spaces of these weak product spaces, and are therefore naturally phrased in terms of multiplicative Hankel forms. We show that there are bounded, even Schatten class, multiplicative Hankel forms on \({\mathscr{H}^{2}_{0} \times \mathscr{H}^{2}_{0}}\) whose analytic symbols are not in \({\mathscr{H}^2}\). Based on this result we examine Nehari’s theorem for such Hankel forms. We define also the skew product spaces associated with \({\mathscr{H}^{2} \odot \mathscr{H}^2}\) and \({\mathscr{H}^{2}_{0} \odot \mathscr{H}^{2}_{0}}\), with respect to both half-plane and polydisc differentiation, the latter arising from Bohr’s point of view. In the process we supply square function characterizations of the Hardy spaces \({\mathscr{H}^p}\), for \({0 < p < \infty}\), from the viewpoints of both types of differentiation. Finally we compare the skew product spaces to the weak product spaces, leading naturally to an interesting Schur multiplier problem.

This is a preview of subscription content, log in to check access.


  1. 1

    Aleman A., Perfekt K.-M.: Hankel forms and embedding theorems in weighted Dirichlet spaces. Int. Math. Res. Not. IMRN 19, 4435–4448 (2012)

    MathSciNet  MATH  Google Scholar 

  2. 2

    Arcozzi N., Rochberg R., Sawyer E.T., Wick B.D.: The Dirichlet space: a survey. N. Y. J. Math. 17, 45–86 (2011)

    MathSciNet  MATH  Google Scholar 

  3. 3

    Bailleul M., Brevig O.F.: Composition operators on Bohr–Bergman spaces of Dirichlet series. Ann. Acad. Sci. Fenn. Math. 41(1), 129–142 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Bayart F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Bennett G.: Schur multipliers. Duke Math. J. 44(3), 603–639 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Bohnenblust H.F., Hille E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600–622 (1931)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Bohr H.: Ueber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletschen Reihen \({\sum a_{n} / n^{s}}\), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Klasse 1913, 441–488 (1913)

    Google Scholar 

  8. 8

    Bondarenko A., Seip K.: Helson’s problem for sums of a random multiplicative function. Mathematika 62(1), 101–110 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Bourgain J.: On the similarity problem for polynomially bounded operators on Hilbert space. Israel J. Math. 54(2), 227–241 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Brevig O.F., Perfekt K.-M.: Failure of Nehari’s theorem for multiplicative Hankel forms in Schatten classes. Studia Math. 228(2), 101–108 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Brevig O.F., Perfekt K.-M., Seip K., Siskakis A.G., Vukotić D.: The multiplicative Hilbert matrix. Adv. Math. 302, 410–432 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Cole B.J., Gamelin T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. (3) 53(1), 112–142 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Davidson K.R., Paulsen V.I.: Polynomially bounded operators. J. Reine Angew. Math. 487, 153–170 (1997)

    MathSciNet  MATH  Google Scholar 

  14. 14

    Duren, P.L.: Theory of \({H^{p}}\) Spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

  15. 15

    Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Ferguson S.H.: Polynomially bounded operators and Ext groups. Proc. Am. Math. Soc. 124(9), 2779–2785 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Ferguson S.H., Lacey M.T.: A characterization of product BMO by commutators. Acta Math. 189(2), 143–160 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Gundy, R.F., Wheeden, R.L.: Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh–Paley series. Studia Math. 49, 107–124 (1973/1974)

  19. 19

    Hardy G.H., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  20. 20

    Hedenmalm H., Lindqvist P., Seip K.: A Hilbert space of Dirichlet series and systems of dilated functions in L 2(0,1). Duke Math. J. 86(1), 1–37 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Helson H.: Hankel forms and sums of random variables. Studia Math. 176(1), 85–92 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22

    Helson H.: Hankel forms. Studia Math. 198(1), 79–84 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Lacey M.T., Terwilleger E.: Hankel operators in several complex variables and product BMO. Houston J. Math. 35(1), 159–183 (2009)

    MathSciNet  MATH  Google Scholar 

  24. 24

    Nehari Z.: On bounded bilinear forms. Ann. Math. (2) 65, 153–162 (1957)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Ortega-Cerdà J., Seip K.: A lower bound in Nehari’s theorem on the polydisc. J. Anal. Math. 118(1), 339–342 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Pisier G.: A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Am. Math. Soc. 10(2), 351–369 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series, Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)

Download references

Author information



Corresponding author

Correspondence to Karl-Mikael Perfekt.

Additional information

O. F. Brevig is supported by Grant 227768 of the Research Council of Norway. K.-M. Perfekt was supported by the Swedish Research Council under contract 621-2014-5159 to Johan Helsing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brevig, O.F., Perfekt, K. Weak Product Spaces of Dirichlet Series. Integr. Equ. Oper. Theory 86, 453–473 (2016). https://doi.org/10.1007/s00020-016-2320-3

Download citation

Mathematics Subject Classification

  • Primary 47B35
  • Secondary 30B50


  • Dirichlet series
  • Hankel form
  • Square function
  • Weak product space